

MINI-X

MINIRAIL MINISCALE PLUS MINISLIDE

Product catalog 2015

Latest version of the catalogs

You can always find the latest version of our catalogs in the Download area of our website.

This publication has been compiled with great care and all information has been checked for accuracy. However, we can assume no liability for incorrect or incomplete information. We reserve the right to make changes to the information and technical data as a result of enhancements to our products. Reprinting or reproducing, even in part, is not permitted without our written consent.

Table of Contents

Foreword

1

Use	eful Guidelines	6
2.1	Videos	6
2.2	2D and 3D Drawings	6
2.3	Regulations Regarding Substances and Limit Values	6
2.4	Index and Type Designations Assigned to Chapters	7
	Unit Names	10

3 MINI-X Overview

4 Applications

5 Customized Solutions

6	Spe	ecial Requirements	15
	6.1	Temperature Range	15
	6.2	Speed and Acceleration	15
	6.3	Cleanroom	15
	6.4	Vacuum	15
	6.5	Corrosion Resistance	16
	6.6	Short Strokes	16
		6.6.1 Short Strokes with MINISLIDE	16
		6.6.2 Short Strokes with MINIRAIL and MINISCALE PLUS	16

7 MINIRAIL Product Overview

7.1	Produc	ot Characteristics	18
	7.1.1	Carriage Interchangeability	18
	7.1.2	LUBE-S Long-term Lubrication from SCHNEEBERGER	18
	7.1.3	The Carriage Range	18
	7.1.4	Speed and Acceleration	19
	7.1.5	High Load Capacities	19
	7.1.6	Simple Installation and Maintenance	19
	7.1.7	Exceptional Robustness	19
	7.1.8	Sophisticated Lubrication Concept	20
	7.1.9	Excellent Running Properties	20
	7.1.10	Maximum Protection from Contamination	20
7.2	Techni	cal Information and Alternative Variants	22
	7.2.1	Performance Parameters of MINIRAIL	22
	7.2.2	Reference and Supporting Surfaces	22
	7.2.3	Accuracy Classes	23
	7.2.4	Running Accuracy	24
	7.2.5	Preload Classes	24
	7.2.6	Push Force	25
	7.2.7	Friction and Smoothness	25
	7.2.8	Carriage Uniformity System	25
	7.2.9	Rail Length and Hole Spacings	26
	7.2.10	Dimension Tables, Load Capacities and Moment Loads for Standard Sized MINIRAIL	28
	7.2.11	Dimension Tables, Load Capacities, and Moment Loads, for Wider Width MINIRAIL	30
	7.2.12	Lubrication	32

5

11

12

14

Table of Contents

Page number

33

8 MINIRAIL Options

8.1	LUBE-S (LS) Long-term Lubrication	33
8.2		34
8.3	Push Force Defined (VD)	34
8.4	Height-Matched Carriages (HA)	34
8.5	Customer-Specific Lubrication (KB)	35
8.6	Cleaned and Vacuum-packed (US)	35

9	MI	NIRAIL Accessories	36
	9.1	Plastic Plugs (MNK)	36
	9.2	Wipers (AS, AL and OA)	36
		9.2.1 Standard	36
		9.2.2 Alternatives	36
	9.3	Relubrication Set (MNW)	36

10 MINISCA	LE PLUS Product Overview	37
10.1. Produ	ct Characteristics	38
10.2 Techn	cal Information and Alternative Variants	39
10.2.1	MINISCALE PLUS Performance Parameters	39
10.2.2	MINISCALE PLUS Components and Working Method	40
10.2.3	Signal Processing	42
10.2.4	Reference Marks	44
10.2.5	Interface Module Pin Connections	45
10.2.6	Dimension Tables, Load Capacities, and Moment Loads for Standard Width MINISCALE PLUS	46
10.2.7	Dimension Tables, Load Capacities and Moment Loads for Wider Width MINISCALE PLUS	48
10.2.8	Lubrication	50

11 MINISCALE PLUS Options	51
11.1 Push Force Defined (VD)	51
11.2 Height-matched Carriages (HA)	51
11.3 Customer-specific Lubrication (KB)	51

12 MINISCALE PLUS Accessories	52
12.1 MINISCALE PLUS Counter and Position Indicator	52
12.1.1 1-axis USB Counter 026	52
12.1.2 3-axis USB Counter 046	52
12.1.3 2-axis Position Indicator SIRIUS II	53
12.2 ESD Wrist Strap Set	54

13	MIN	NISLIDE Frictionless Table Product Overview	55
	13.1	MINISLIDE MS Product Characteristics	56
		13.1.1 Extensive Range	56
		13.1.2 Maximum Load Carrying Capacity and Compact Form	56
		13.1.3 Integrated Cage Centering Feature	56

Page number

55

13 MINISLIDE Frictionless Table Product Overview

MINISLIDE MSQ Product Characteristics	57
13.2.1 Extensive Range	57
13.2.2 High Speed and Acceleration	57
13.2.3 High Process Reliability Thanks to Cage Control	57
13.2.4 Maximum Rigidity and Load Capacities	58
Technical Information and Alternative Variants	59
13.3.1 MINISLIDE MS Performance Parameters	59
13.3.2 MINISLIDE MSQ Performance Parameters	59
13.3.3 Reference and Supporting Surfaces	60
13.3.4 Running Accuracy and Parallelism of Supporting Surfaces	60
13.3.5 Tolerance of the Total Height	61
13.3.6 Push Force and Preload	61
13.3.7 Friction and Smoothness	61
13.3.8 Dimension Tables, Load Capacities, Weights and Moment Loads	62
13.3.9 Lubrication	68
	13.2.1Extensive Range13.2.2High Speed and Acceleration13.2.3High Process Reliability Thanks to Cage Control13.2.4Maximum Rigidity and Load CapacitiesTechnical Information and Alternative Variants13.3.1MINISLIDE MS Performance Parameters13.3.2MINISLIDE MSQ Performance Parameters13.3.3Reference and Supporting Surfaces13.4Running Accuracy and Parallelism of Supporting Surfaces13.5Tolerance of the Total Height13.6Push Force and Preload13.7Friction and Smoothness13.8Dimension Tables, Load Capacities, Weights and Moment Loads

14 MINISLIDE Options	69
14.1 Push Force Defined (VD)	69
14.2 Customer-specific Lubrication (KB)	69
14.3 Cleaned and Vacuum-packed (US)	69

15	Cor	nfiguration of the Base Structure	70
	15.1	General	70
	15.2	Surface Quality	70
	15.3	Reference Height and Corner Radii	71
	15.4	Geometric and Position Accuracy of the Base Surfaces	72
		15.4.1 Permissible Lateral Deviation E1 for MINIRAIL and MINISCALE PLUS	72
		15.4.2 Permissible Longitudinal Deviation E ₂ for MINIRAIL and MINISCALE PLUS	73
		15.4.3 Flatness of the Mounting Surfaces E ₆ and E ₇	74
		15.4.4 Parallelism Tolerance of the Reference Surfaces for MINIRAIL and MINISCALE PLUS	75

16 Installation and Adjustment Guidelines for MINIRAIL and MINISCALE PLUS 77 16.1 Methods for Aligning Guideways 77 16.2 Installation Methods 78 16.2.1 Load 78 78 16.2.2 Accuracy 16.2.3 Installation Time and Engineering Expense 78 16.2.4 Installation Location and Specifics 78 16.3 Preparing for Installation 80 16.3.1 Required Tools and Equipment 80 16.3.2 Preparing the Reference Surfaces 80 16.3.3 Lubricating MINIRAIL 81 82 16.3.4 Lubricating MINISCALE PLUS 82 16.4 Installation 16.4.1 General 83 16.4.2 MINIRAIL and MINISCALE PLUS 83 16.4.3 MINIRAIL 83 84 16.5 Tightening Torques for the Fastening Screws 84 16.6 Specific Information on MINISCALE PLUS

Table of Contents

Page number

85

17 Load Carrying Capacity and Service Life

17.1	1 Principles	85		
17.2	17.2 Calculation of Service Life in Accordance with the DIN ISO Standard			
	17.2.1 Formula for Calculating Nominal Service Life for Ball Guideways in Meters	86		
	17.2.2 Formula for Calculating Nominal Service Life in Hours	86		
	17.2.3 Effective Load Carrying Capacity Ceff	86		
	17.2.4 Dynamically Equivalent Load P	87		

18 Handling, Storage and Transport	88
18.1 Delivered Condition (Standard Versions)	88
18.2 Handling and Storage	90

19	Ordering Information	91
	19.1 MINIRAIL	91
	19.2 MINISCALE PLUS	91
	19.3 MINISLIDE MS oder MSQ	91

In 1923, SCHNEEBERGER laid the foundations for the global linear motion technology of today. SCHNEEBERGER innovation made it possible to produce linear guideways, which in terms of load capacity, reliability and cost-effectiveness became what is today the definitive industry standard.

The same principles that resulted in our success still apply today: the spirit of innovation, a no-compromise approach to quality and the ambition to deliver products to our customers that are always technically and economically superior. Both then and now the name SCHNEEBERGER is synonymous with innovative linear motion technology and cost-effective solutions throughout the world. Our development, production and application expertise have given us a reputation as a well-respected business partner. Together with our committed, customer-oriented employees, we are global leaders.

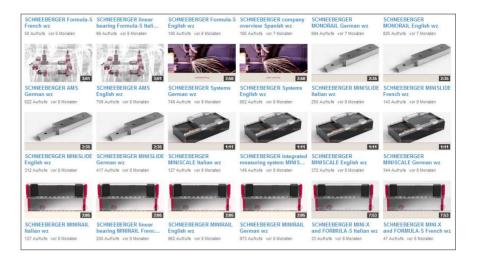
We have developed broad and extensive technological skills from many successful projects in a variety of industries. Together with customers we evaluate the best products from the standard range or define project-specific solutions. Thanks to many years of experience and consistent focus on linear motion technology, we have been able to continuously develop our products and solutions so as to provide our customers with technical advantages.

State-of-the-art production technologies and highly skilled employees at our production facilities produce to the highest quality standards. We are pleased to present our high-precision MINI-X series products in this catalogue. MINI-X includes MINIRAIL, MINISCALE PLUS, and MINISLIDE product lines which are suitable for use in a wide range of applications:

- Biotechnology
- Semiconductor Industry
- Laboratory Automation
- Medical Technology
- Handling and Robotics
- Pick-and-place Machines
- Metrology
- Micro-automation
- Nanotechnology
- Optics Industry
- Processing Machines for Microtechnology

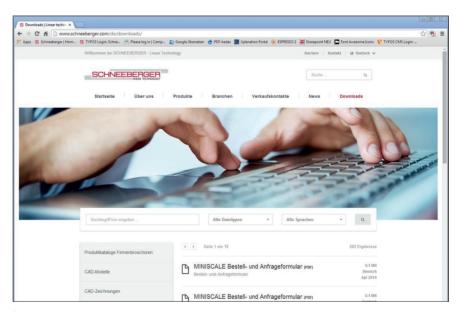
MINI-X enables economical, zero backlash guide systems to be constructed with ease. MINI-X boasts the following outstanding product characteristics:

- High level of smoothness and consistent accuracy
- No stick-slip effect
- High speed and acceleration
- Minimal wear
- High level of strength
- High rigidity
- High load-bearing capacity
- Robustness
- Suitable for use in a vacuum or cleanroom


Our skilled and committed employees are pleased to offer product recommendations to assist in optimising your application designs.

SCHNEEBERGER - «Essentials for the Best»

Useful Guidelines


2.1 Videos

Videos about MINI-X (MINIRAIL, MINISCALE PLUS and MINISLIDE) are available on our website www.schneeberger.com under the respective product group.

2.2 2D and 3D Drawings

Drawings and models are available on the Cadenas Part Server free of charge in all formats.

Additional product information is available from the download section of our website www.schneeberger.com.

Our website www.schneeberger.com

2.3 Regulations Regarding Substances and Limit Values

Schneeberger AG linear engineering abides by legal requirements in its product design and production. The products in this catalogue therefore meet the requirements laid out by RoHs and REACH.

Compliance with specific requirements can be confirmed upon request.

Useful Guidelines

2

2.4 Index and Type Designations Assigned to Chapters

Α	General	MINIRAIL and MINISCALE	MINISLIDE
2D drawings	2.2		
3D models	2.2		
Acceleration	6.2	7.2.1 / 10.2.1	13.3.1 / 13.3.2
Accessories		9/12	
Accuracy	15	7.2.3 / 7.2.4 / 10.2.2	13.3.4
AL		9.2	
Alignment		16.1 /16.2.3	
Application-specific solutions	5		
Areas of application		7.2.1 / 10.2.1	13.3.1 / 13.3.2
Assembly fixture		18.1	
Assembly surfaces	15		
Attachment hole		7.2.9 /10.2.6	
AS		9.2	
В			
Ball recirculation		7.1.4 / 7.1.9 / 7.2.1	
Base structure	15		
C			
Cage control			13.2.3
Carriage spacing		8.4 /17.2	10.2.0
Carriage uniformity system		7.1.1/7.2.8	
Ceramic balls	5	1.1.1/1.2.0	
Cleanroom	6.3	7.2.1 / 10.2.2	13.3.1 / 13.3.2
		7.2.1710.2.2	13.3.17 13.3.2
Coatings	5		10.0.7
Coefficient of friction	15.3	7.2.7	13.3.7
Corner radii			
Corrosion resistance	6.5		
Counter		12.1	
Customised solutions	5		
D			
Dimensional scale		10.2.1 / 10.2.4	
Dimension table		7.2.10 / 10.2.6	13.3.8
Download	2.2		
Drawings	2.2		
Dry run	5		
E			
Environment	2.3		
ESD		12.2	
F			
Fastening screws	16.4 / 16.5		
Flatness	15.4.3		
Friction		7.2.7	13.3.7
G			
G1	15	7.2.3 / 7.2.4 / 10.2.2	13.3.4
G3	15	7.2.3 / 7.2.4 / 10.2.2	13.3.4
Н			
HA		8.4	
Handling	18		

Н	General	MINIRAIL and MINISCALE	MINISLIDE
Height-matched		8.4 / 11.2	
Height deviation		8.4 / 11.2	15.4
Highlights		7.1 / 10.1	13.1 / 13.2
Hole spacing		7.2.9	
Humidity		7.2.1 / 10.2.1	13.3.1 / 13.3.2
Hybrid guideways	5		
1			
Installation	16		
Installation methods		16.2	
Interface		10.2.2	
Introduction	1		
К			
KB		8.5	14.2
L			
Limited stroke			13.2.3
Limit values	2.3		
Load carrying capacity	17		
Load capacity	17	7.2.10 / 10.2.6	13.3.8
Long-term lubrication		8.1	
Lubrication	5/6.1/6.6	7.2.12 / 8.1 / 8.5 / 10.2.8 / 11.3 / 16.3.3	13.3.9 / 14.2
LUBE-S		8.1	
M			
Material		7.2.1	13.3.1 / 13.3.2
Measuring system		10	
MINIRAIL		7	
MINISCALE PLUS		10	
MINISLIDE			13
MNN		7.1.3 / 19.1	
MNNS		7.1.3 / 19.1	
MNNX		7.1.3 / 19.1	
MNNXL		7.1.3 / 19.1	
MNW		9.3	
Multi-part guideways		8.2	
Moment loads		7.2.10 / 10.2.6	13.2.4 / 13.3.8
MS			13.1 / 13.3.1
MSQ			13.2 / 13.3.2
0			
OA		9.2	
Oil reservoir		8.1	
Operating voltage		10.2.1	
Options		8/11	14
Ordering information	18	0711	
Output signal		10.2.1 /10.2.3	
Output signal Overview		7.1 / 10.1	13.1 / 13.2
P		/.i//IU.i	10.1 / 10.2
	10		
Packaging	18	15 4 4	
Parallelism tolerance		15.4.4	
Performance parameters		7.2.1 / 10.2.1	13.3.1 / 13.3.2

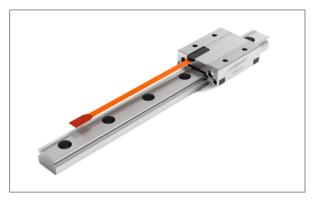
SCH	NEE			
		UNEA	& TECHN	IOLOGY

General	MINIRAIL and MINISCALE	MINISLIDE
	10.2.5	
	9.1	
	9.1	
	15.3	
	12.1	
	7.2.1 / 7.2.5 / 10.2.1	13.3.1 / 13.3.2 / 13.3.6
	7.2.1 / 7.2.5 / 10.2.1	
	7.1.9	
	7.2.6 / 8.3 / 11.1	13.3.6 / 14.1
	15.3.1	
	7.2.9	
2.3		
	10.2.4	
15		
	10.2.4	
2.3		
	9.3	
6		
	7.2.3 / 7.2.4	13.3.4
	19.2	
6.6 / 17		
	10.2.3	
3		
6.2		13.3.1 / 13.3.2
	7.2 / 10.2	13.3
		14.3.3
15.2		
	7.2 / 10.2	13.3
6.1		13.3.1 / 13.3.2
6		
16.5		
	I I <td< td=""><td>10.2.5 9.1 15.3 12.1 7.2.1/7.2.5/10.2.1 7.2.1/7.2.5/10.2.1 7.2.6/8.3/11.1 7.2.6/8.3/11.1 7.2.6/8.3/11.1 7.2.9 2.3 10.2.4 15 10.2.4 2.3 10.2.4 2.3 10.2.4 2.3 10.2.4 2.3 9.3 10.2.4 2.3 9.3 10.2.1 7.1.1/7.2.8 10.2.1 7.2.3/7.2.4 6 2.3 9.3 10.2.1 6.6 19.2 9.2 6.6/17 7.2.5/8.1/15.3.4 17 6.6 10.2.1 6.6 10.2.3 3 7.2.7 10.2.1 6.2 7.2.1/10.2 7.2.2 15</td></td<>	10.2.5 9.1 15.3 12.1 7.2.1/7.2.5/10.2.1 7.2.1/7.2.5/10.2.1 7.2.6/8.3/11.1 7.2.6/8.3/11.1 7.2.6/8.3/11.1 7.2.9 2.3 10.2.4 15 10.2.4 2.3 10.2.4 2.3 10.2.4 2.3 10.2.4 2.3 9.3 10.2.4 2.3 9.3 10.2.1 7.1.1/7.2.8 10.2.1 7.2.3/7.2.4 6 2.3 9.3 10.2.1 6.6 19.2 9.2 6.6/17 7.2.5/8.1/15.3.4 17 6.6 10.2.1 6.6 10.2.3 3 7.2.7 10.2.1 6.2 7.2.1/10.2 7.2.2 15

Useful Guidelines

2

U	General	MINIRAIL and MINISCALE	MINISLIDE
US		8.6	
Use		7.1 / 10.1	13.1 / 13.2
V			
VO		7.2.1 / 7.2.5	
V1		7.2.1 / 7.2.5	
Vacuum		6.4 / 6.5 / 7.2.1 / 8.6 / 9.2.2 / 10.2.1	13.3.1 / 13.3.2
VD		8.3 / 14.1	
Videos	2.1		
W			
Website	2		
Wipers		7.2.1 / 9.2	
Wrist strap		12.2	
Z			
ZG		8.2	


2.5 Unit Names

Name	Description	Unit
а	Event probability	Factor
С	Dynamic load capacity	N
Co	Static load capacity	N
C100	Dynamic load capacity for a 100,000 m travel distance	N
C ₅₀	Dynamic load capacity for a 50,000 m travel distance	N
Ceff	Effective load carrying capacity per rolling element	N
fк	Contact factor	Factor
Н	Stroke	mm
K	Spacing between two carriages	mm
L	Length	mm
L	Nominal service life	m
L1 L2	Partial lengths	mm
Lo	Carriage spacing	mm
Lh	Nominal service life	h
Μ	Moment load longitudinally and laterally	Nm
Mds	Tightening torque	Ncm
ML	Permissible moment load longitudinally and laterally	Nm
Mol	Permissible longitudinal static torque	Nm
Moq	Permissible lateral static torque	Nm
Mq	Permissible lateral moment load	Nm
n	Stroke frequency	min ⁻¹
Ρ	Dynamically equivalent load	N
Q	Spacing of the guide rails	mm
Vm	Medium travelling speed	m/min
Vvsp	Preload factor	Factor

MINI-X embodies the newest generation of miniature guideways for demanding applications. They are extremely robust and prove themselves in every application with their high level of smoothness, precision and reliability.

MINIRAIL

MINISCALE PLUS

MINISLIDE MS

MINIRAIL The miniature profiled linear guideway

- Process reliability thanks to superior design
- Speeds up to 5 m/s and acceleration up to 300 m/s²
- The precisely finished carriages can be interchanged as desired
- Low risk of contamination thanks to tight clearance between the carriage and guideway
- Low travel pulsation thanks to optimally shaped ball recirculation
- Vacuum-compatible down to 10⁻⁷ mbar (10⁻⁹ mbar on request)
- The long-term lubrication LUBE-S option enables maintenance-free operation
- Unlimited rail length

MINISCALE PLUS Guiding and measuring in one

- Due to the fact that the measuring system requires very little space, very compact designs can be implemented
- Simple installation since the distance measurement does not need calibration
- Additional components and their installation are not necessary
- Optimal thermal connection to the machine bed
- Global drive compatibility

MINSLIDE MS Maximum performance, minimum space

- The Gothic arc profile of the guideways allows for load capacities which are up to 15 times higher than that of a 90° V-profile
- MINISLIDE MS enables compact and robust constructions with minimal weight
- The material used and the outstanding design allow for a high level of rigidity
- Vacuum-compatible down to 10⁻⁷ mbar
- Cage centring system

MINISLIDE MSQ Productivity encapsulated

- Maximum process reliability thanks to integrated cage control
- The snug, two-row profile of the guideways allows high load capacities, and because of the materials used, unrivalled rigidity
- MINISLIDE MSQ enables compact and robust constructions
 with minimal weight
- Vacuum-compatible down to 10⁻⁹ mbar

3 MINI-X Overview

MINISLIDE MSQ

4 Applications

MINI-X is used in situations where high precision and process reliability are needed due to constricted space. The unique advantages of MINI-X come into their own in the following applications:

- Processing machines for the micro-sector
- Biotechnology
- Semiconductor industry
- Laboratory automation
- Medical technology
- Metrology
- Micro-automation
- Nanotechnology
- Optics industry
- Robotics

Modern microscopes are indispensable in research and in day-to-day medical processes. In order to analyze the samples quickly and accurately, the slide underneath the lens has always been moved by means of a cross table.

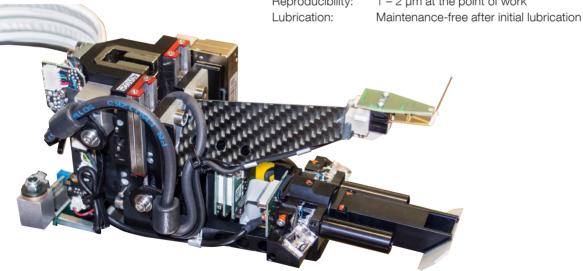
Microscope with Scan Table by OBJECTIVE IMAGINE

The OASIS Glide-S2 Scan Table from OBJECTIVE IMAGINE is based on MINIRAIL and MINISCALE PLUS; the drive is provided by QUICKSHAFT® linear motors. Using these compact components reduces the weight compared with conventional constructions (ball screws and multiphase motors) by a factor of around five. The OASIS Glide-S2 is not only fast but also decidedly quiet. Precision in the smallest area - reproducible with an accuracy of several microns.

Applications

Use of MINISLIDE

4


The precision and speed of flying probe testers are extremely important for the electrical testing of structures measuring just 50 μ m or less. The high acceleration in particular must not affect the contact accuracy of the test design.

atg Luther & Maelzer offers different machine configurations for a multitude of products. An extremely wide range of materials and designs, including rigid and flexible PCBs and everything from IC packages to touch panels, can be tested with the latest machine generation.

The type A7 flying probe test system from atg Luther & Maelzer

Acceleration:30 gWorking stroke:1 - 2 mmTotal stroke:10 - 15 mmReproducibility: $1 - 2 \mu m$ at the point of workLubrication:Maintenance-free after initial

Test head with modified MINISLIDE MSQ 7 40.32

Customized Solutions

SCHNEEBERGER's many years of experience in linear motion technology have influenced the concept and design of MINI-X. Due to their outstanding performance parameters, MINI-X plays a decisive role in the accuracy of every application.

MINI-X are universally applicable. SCHNEEBERGER offers configurations upon request for application-specific requirements, including:

- Defined push forces
- Application-specific lubrication
- Special packaging
- Hybrid guideways with ceramic ball bearings
- Coatings for dry runs
- Customer-specific design
- Defined cage reset force
- Defined records

Installation in SCHNEEBERGER's cleanroom

MINIRAIL modified according to the requirements of the customer

MINISLIDE MSQ finished according to the requirements of the customer

MINISLIDE MS modified and specified according to the requirements of the customer

vacuum-packed for use in cleanrooms.

MINIRAIL with vented holes in carriages and guideways,

Examples of customer-specific MINI-X products

MINISLIDE MSQ finished specifically to the customer's needs.

MINISLIDE MS with ceramic ball bearings, additional holes and positioning pins. Push and cage reset forces are defined and recorded.

Special Requirements

6.1 Temperature Range

MINI-X can be operated in different temperature ranges. SCHNEEBERGER can deliver guideways with application-specific lubricants on request.

	Operating temperature
MINIRAIL	-40° C to + 80° C (higher temperatures on request)
MINISCALE PLUS	-40° C to + 80° C
MINISLIDE MS	-40° C to + 80° C
MINISLIDE MSQ	-40° C to + 150° C

6.2 Speeds and Acceleration

MINI-X are equipped for the following speeds and acceleration:

	max. speed	max. acceleration
MINIRAIL	5 m/s	300 m/s ²
MINISCALE PLUS	5 m/s	300 m/s ²
MINISLIDE MS	1 m/s	50 m/s ²
MINISLIDE MSQ	3 m/s	300 m/s ²

6.3 Cleanroom

In the cleanroom, it is necessary to reduce the number of particles as well as apply appropriate types of lubricating grease. SCHNEEBERGER delivers guideways for cleanroom classes up to ISO 6 on request. The guideways are packaged appropriately and lubricated according to requirements.

6.4 Vacuum

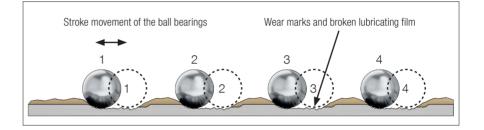
Corrosion resistant guideways are preferred for use in a vacuum. It is also necessary to avoid out-gassing of plastics, to ensure vented of attachment holes and to use an appropriate lubricant.

On request, SCHNEEBERGER can deliver the guideways packaged in a cleanroom and lubricated according to requirements.

	Vacuum ranges for standard MINI-X products:
MINIRAIL	10 ⁻⁷ mbar (HV). 10 ⁻⁹ mbar (UHV) on request. The values apply without wipers
MINISCALE PLUS	On request
MINISLIDE MS	10 ⁻⁷ mbar (HV)
MINISLIDE MSQ	10 ⁻⁹ mbar (UHV)

Notes: the suitability for a vacuum depends on the materials used.

6 Special Requirements

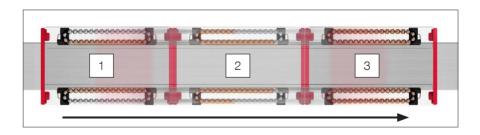

6.5 Corrosion Resistance

Corrosion protection is not just required in a cleanroom or vacuum. Medical, laboratory or food applications demand corrosion-resistant steel, as used in all MINI-X products.

6.6 Short Strokes

The effects of short strokes include point compression along the tracks and inadequate lubrication. As a result, short strokes reduce the service life of the guideway. This can only be reliably determined by means of experimentation.

6.6.1 Short Strokes with MINISLIDE

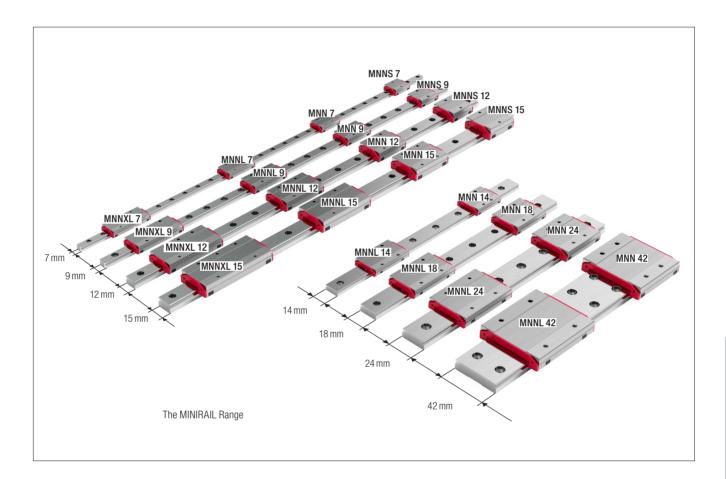


The stroke length of the guideway is so low that the rolling elements cannot pass the position of the next rolling element. As a result, local wear marks form on the tracks. Overstraining the tracks with short strokes leads to material damage which inevitably leads to the loss of preload. The accuracy of the guideway can consequently be reduced which can lead to premature failure.

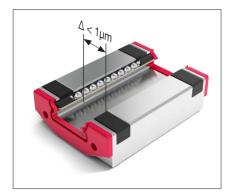
Additionally, high-frequency strokes can break the lubricating film, further exacerbating wear. With suitable lubricants and regular strokes along the entire stroke length, better lubrication can be achieved, delaying the effects of material wear.

6.6.2 Short Strokes with MINIRAIL and MINISCALE PLUS

In the starting position (1), only the ball bearings directly under load are lubricated. Once the carriage moves to the right (2), a section of the ball bearings takes up the lubricant via the guideway. Only once position 3 has been reached will all of the ball bearings and all four corners of the ball recirculation be lubricated.



A short stroke is when the stroke of the carriage corresponds to less than twice its length. This can lead to damage, particularly in the redirection unit. Regular lubricating strokes along the entire stroke length at a minimum of twice the length of the carriage ensure better lubricant distribution, protecting the guideway from premature wear.


We recommend using LUBE-S long-term lubrication for short strokes. (see chapter 8.1).

MINIRAIL are highly accurate miniature profiled linear guideways with ball bearings. Their precision, robustness, innovative design and strength are second to none.

The range includes the standard rail widths of 7, 9, 12 and 15 as well as wider widths of 14, 18, 24 and 42. The carriages are available in four lengths: MNNS (short), MNN (standard), MNNL (long) and MNNXL (extra long).

7.1 Product Characteristics

7.1.1 Carriage Interchangeability

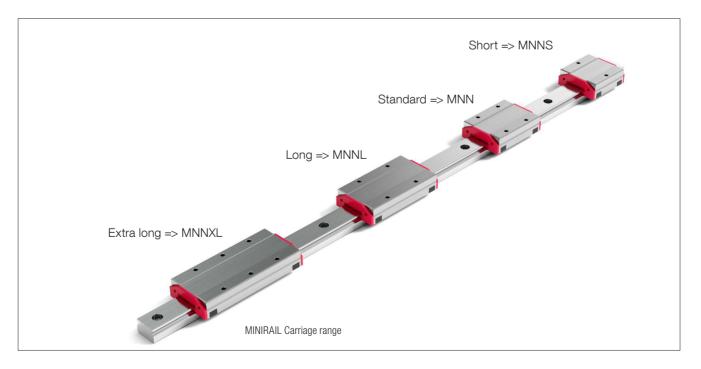
Because the carriages are made to precisely the same size, they can be switched for other carriages at will (carriage uniformity system). This simplifies storage and maintenance considerably.

Note:

The MINISCALE PLUS carriages and guideways are always matched to each other and are therefore delivered as a set (carriage mounted on rails) - (see chapter 18.1).

Carriage uniformity system

LUBE-S

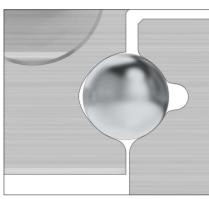

7.1.2 LUBE-S Long-term Lubrication from SCHNEEBERGER

The SCHNEEBERGER solution for long-term lubrication LUBE-S is described in detail in chapter 8.1. LUBE-S enables maintenance-free operation for up to 20,000 km, requires no extra space and is good for the environment and short stroke applications.

LUBE-S long-term lubrication

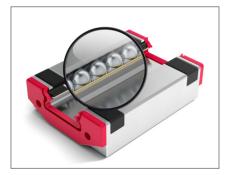
7.1.3 The Carriage Range

The different carriage lengths from short to extra long, along with the corresponding load capacities, allow greater flexibility when designing axes of motion.



7.1.4 Speed and Acceleration

The innovative embedding of ball recirculation in the carriage allows speeds of up to 5 m/s and accelerations of up to 300 m/s².

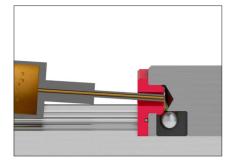

Enlargement of ball recirculation in the carriages

7.1.5 High Load Capacities

The Gothic arc profile of the guideway tracks allows high load capacities.

7.1.6 Simple Installation and Maintenance

Whether a carriage is moving along the guideways or being prepared for installation, the ball bearings are always held in place by a retaining wire. This makes for easier handling and is a prerequisite for simple installation and replacement carriages.


Retaining wire holding the balls in place

Made of corrosion-resistant, through-hardened steel

7.1.7 Exceptional Robustness

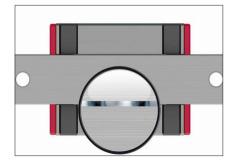
Carriages and guideways are made of through-hardened stainless steel. They are therefore superbly suited for use in the most demanding of applications.

MINIRAIL lubrication with oil

7.1.8 Sophisticated Lubrication Concept

MINIRAIL are delivered unlubricated as standard, allowing you to decide on the optimal lubrication for the respective application (see chapter 7.2.12 «Lubricating MINIRAIL»).

Each wiper on the carriages features two lubrication holes so that the left and right ball recirculation pathways can be lubricated with oil separately. This ensures that the tracks of the carriage can be supplied with lubricant independent of their installation orientation.


Also consider the long-term lubrication option LUBE-S in chapter 8.1.

7.1.9 Excellent Running Properties

The ball recirculation, transitions and run-ins on the carriages are designed for consistent redirection of the ball bearings. They ensure optimal containment of the enormous centrifugal forces involved with minimal friction.

Polished run-ins

Small clearances between carriages and guideways

7.1.10 Maximum Protection from Contamination

The ultra-precise manufacturing of the carriages and guideways ensures minimal clearance between them. This prevents the migration of dirt particles into carriages.

The carriages are fitted with profiled wipers as standard. They are snap-fitted into place and can therefore be easily replaced. Alternative variants (for example low-friction or clearance wipers) are described in chapter 9.2.

Detachable wipers

In order to prevent the accumulation of dirt, the attachment holes in the guideways can be sealed with plastic plugs (see chapter 9.1).

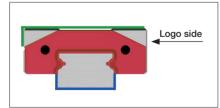
Plastic plugs for sealing

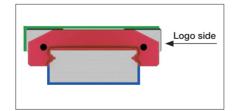
7.2 Technical Information and Alternative Variants

7.2.1 MINIRAIL Performance Parameters

Max. acceleration	300 m/s ²						
Max. speed	5 m/s						
Preload classes	V0 light preload up to 0.01 C (C = dynamic load capacity)						
	V1 Preload 0 to 0.03 C (C = dynamic load capacity)						
Accuracy classes	G1 and G3						
Materials							
- guideways, carriages, ball bearings	Stainless steel, through-hardened						
- wiper (2)	TPC						
- ball recirculation	POM						
Areas of application							
- temperature range (1)	-40° C to +80° C (-40° F to +176° F)						
- vacuum (2)	vacuum (max. 10 ⁻⁷ mbar)						
- humidity	10 % – 70 % (non-condensing)						
- cleanroom	Cleanroom class ISO 7 or ISO 6 (in accordance with ISO 14644-1)						

⁽¹⁾ With modified ball recirculation made of PEEK, temperatures up to +150° C (+302° F) are possible (on request). The standard lubricant covers a temperature range from -20° C to +100° C. SCHNEEBERGER also accepts requests for lubricants for other temperatures.


⁽²⁾ For use in high vacuum, the wipers on the carriages must be removed. MINIRAIL with modified ball recirculation made of PEEK can also be operated in a vacuum (up to 10⁻⁹ mbar) on request. Use in a vacuum requires a special lubricant available from SCHNEEBERGER. So that no air remains trapped in the blind holes, the fastening screws must be vented.


7.2.2 Reference and Supporting Surfaces

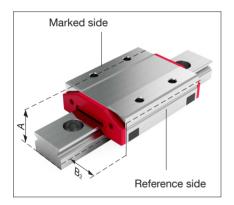
The reference and supporting surfaces of carriages and guideways are designated as follows.

Standard sizes 7, 9, 12 and 15

Carriage reference and supporting surfaces
 Guideway reference and supporting surfaces

The polished reference side of the carriage is opposite the carriage side with the company logo / type designation. Either side of the guideway can be used as a reference side.

7.2.3 Accuracy Classes

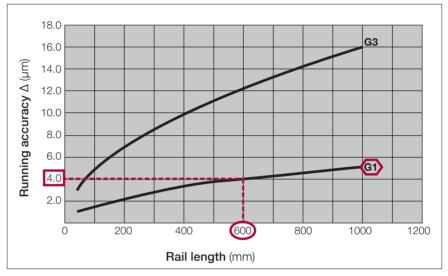

MINIRAIL carriages and guide rails are made to a high precision independently of each other. The carriages are interchangeable. This means that any carriage of the same size and accuracy class can be used on the guide rails without influencing the preload class.

MINISCALE PLUS carriages and guide rails are also made to a high precision. Due to the integrated linear encoder, the carriage and guideway are matched together and therefore can only be changed as a set.

Both G1 and G3 accuracy classes offer a precise MINIRAIL range suited to the application-specific needs of the customer. The accuracy classes determine the size tolerances and the running accuracy of the carriages on the guideways: High accuracy G1 Standard accuracy G3

Note:

MINIRAIL are available in accuracy classes G1 and G3 MINISCALE PLUS are always delivered in accuracy class G1.



	Tolerances				
	A and B2	ΔA and $\Delta B2$			
Accuracy class G1	+/- 10 μm	7 µm			
Accuracy class G3	+/- 20 μm	15 µm			
	Measured relative to carriage centre	Difference in measurement between several carriages on the same position on the rails			
	For the measurements mentioned above, the is mounted on a flat surface. Measurement is from the middle of the carriage. Since the me ment is stable, it is based on the midpoint of supporting surfaces				

_23

7.2.4 Running Accuracy

In terms of tolerances, the running of the carriage on a guideway can take on either a linear or wave-like shape. The maximum permissible deviation is limited by the accuracy class of the guideway. As shown on the following diagram, the tolerance is determined by the rail length and by accuracy class G1 or G3.

Example according to the diagram: A rail length of 600 mm and accuracy class G1 results in a maximum permissible deviation of $4.0\ \mu\text{m}$

7.2.5 Preload Classes

The preload classes are defined as a fraction of the dynamic load capacity C (see chapter 17). The amount of preload is generally based on the intended use of the guideways.

An increased preload ...

- ... increases the rigidity
- ... increases the displacement resistance

... reduces the service life

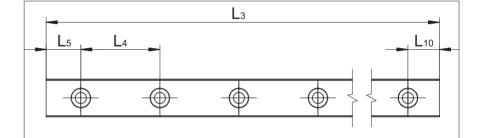
Preload class	Preload	corresponding accuracy class
VO	light preload up to 0.01 • C	G3
V1	0 to 0.03 • C	G1 or G3

7.2.6 Push Force

The push force of the carriage is influenced by the preload class, the lubricant and the wipers used.

The carriages can be delivered with a defined push force on request (see chapter 8.3).

7.2.7 Friction and Smoothness


SCHNEEBERGER places high emphasis on running smoothness during the manufacturing process. Transitions, run-ins and run-outs and the quality of the plastics are given top priority. This also applies in respect of the rolling elements used, which must satisfy the most stringent quality demands. Under normal operating conditions, a coefficient of friction of 0.005 can be expected (without wipers).

7.2.8 Carriage Uniformity System

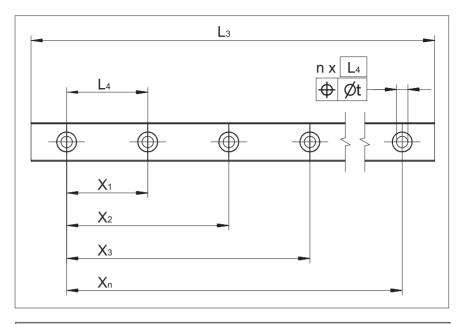
The MINIRAIL carriages are interchangeable within preload and accuracy classes. With this in mind, guideways and carriages are packaged separately (see chapter 18.1). This simplifies interchangeability and storage.

Sizes L4		L₅ and L10	Rail lengths L ₃	max.
7	15	5	40, 55, 70, 85	1000
9	20	7.5	55, 75, 95, 115	995
12	25	10	70, 95, 120, 145	995
15	40	15	70, 110, 150, 190	990
14	30	10	80, 110, 140, 170	980
18	30	10	80, 110, 140, 170	990
24	40	15	110, 150, 190, 230	990
42	40	15	110, 150, 190, 230	990

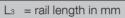
7.2.9 Rail Length and Hole Spacings

 $\begin{array}{ll} L_3 & = \mbox{standard rail lengths in mm} \\ L_4, \, L_5, \, L_{10} & = \mbox{standard hole spacings in mm} \end{array}$

Calculating rail lengths that do not correspond to the standard


Individual rail lengths can be calculated with the following formula (up to a maximum rail length according to the above table):

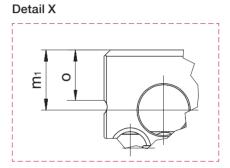
 $L_3 = (n-1) \bullet L_4 + L_5 + L_{10}$


L3	= rail length in mm	
L4, L5, L10	= individual hole spacing in mm	
L ₄	= standard hole spacings in mm	
n	= number of attachment holes	

For hole spacings $L_{\rm 5}$ and $L_{\rm 10},$ the following values are applicable:

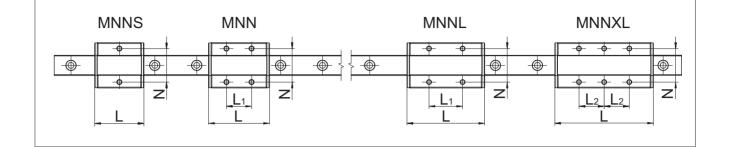
			Rail length									
		7	9	12	15	14	18	24	42			
L₅ and L10	min.	4	5	5	5	5	5	6	6			
(in mm)	max.	11	15	20	35	25	25	34	34			

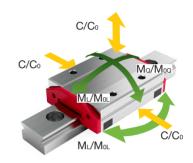
Position tolerance of the attachment holes and tolerances of the rail length


- L₄ = hole spacing in mm
- n = number of attachment holes
- t = position tolerance in mm

	L₃ ≤ 300 mm	L₃ > 300 mm
Position tolerance t of the attachment hole	0.3	0.001 • Xn
Tolerance of the rail length L ₃	±0.3	±0.001 ● L₃

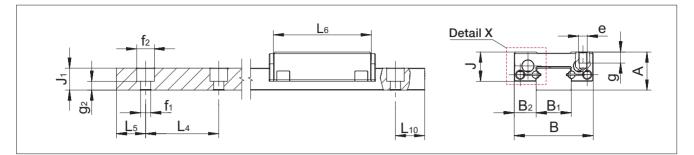
7


7.2.10 Dimension Tables, Load Capacities and Moment Loads for Standard Sized MINIRAIL

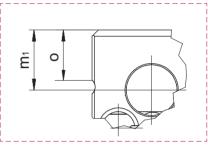


				Sta	ndard siz	ze 7			Sta	ndard siz	ze 9	
		Name	Guideway	SNNM	NNW	MNNL	MNNXL	Guideway	SNNW	NNW	MNNL	MNNXL
	Α	System height			8						0	
	В	System width			1	7				2	0	
	B1	Rail width	7					9				
	B ₂	Distance between reference surfaces				5				5		
	J	Carriage height			6	.5					3	
	J ₁	Rail height	4.5	10.0				5.5			10	= 0
	L	Carriage length with wipers		18.6	24.6	32.1	41.1		22	32	40	50
E	L ₁	Longitudinal spacing of attachment holes		-	8	13	20		-	10	16	26
s (n	L ₂	Longitudinal spacing of attachment holes	15	-	-	-	10	00	-	-	-	13
ion	L4	Spacing of attachment holes	15 5					20 7.5				
Dimensions (mm)	L5/L10	Position of first and last attachment hole Carriage length (steel body)	5	16.1	22.1	29.6	38.6	0.7	19	29	37	47
<u>i</u>	L ₆	Lateral attachment hole spacing		10.1	22.1		30.0		19		5	47
	e	Thread			I					N		
	f_1	Hole diameter	2.4					3.5		10	10	
	f ₂	Countersink diameter	4.2					6				
	g	Thread depth			2	.5					3	
	 	Step drilling height	2.2			-		2				
	m1	Position of lubrication holes			3	.1				3	.8	
	0	Reference face height			2	.5				3	.1	
Load capacity (N)	Co	Static load capacity		935	1560	2340	3275		1385	2770	3880	5270
Load cí (N	С	Dynamic load capacity		645	925	1230	1550		1040	1690	2140	2645
	Μοα	Permissible lateral static torque		3.4	5.6	8.4	11.8		6.5	12.9	18.1	24.5
n) (u	Mol	Permissible longitudinal static torque		1.6	4.3	9.3	18		2.8	10.2	19.4	35.1
Torque (Nm)	Μα	Permissible lateral dynamic torque		2.3	3.3	4.4	5.6		4.8	7.9	9.9	12.3
	ML	Permissible longitudinal dynamic torque		1.1	2.5	4.9	8.5		2.1	6.2	10.7	17.6
Weight		way (g/m), carriage (g)	216	9	13	18	23	309	16	24	31	40

7

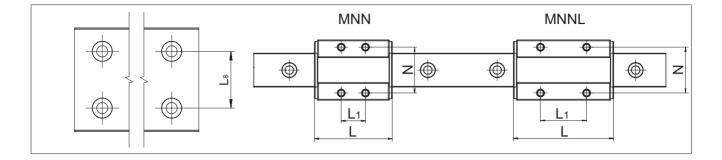


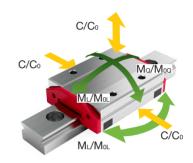
				Star	idard siz	e 12			Star	ndard siz	e 15	
		Name	Guideway	SNNW	NNM	MNNL	MNNXL	Guideway	SNNW	NNW	MNNL	MNNXL
	Α	System height			1						6	
	В	System width			2	7				3	32	
	B1	Rail width	12					15				
	B ₂	Distance between reference surfaces			7.						.5	
	J	Carriage height			1	0				1	2	
	J ₁	Rail height	7.5					9.5				
	L	Carriage length with wipers		23.9	36.4	46.4	58.9		31.7	43.7	58.7	73.7
Dimensions (mm)	<u>L</u> 1	Longitudinal spacing of attachment holes		-	15	20	30		-	20	25	40
s (n	L2	Longitudinal spacing of attachment holes	05	-	-	-	15	10	-	-	-	20
ion	L4	Spacing of attachment holes	25					40				
sue	L5/L10	Position of first and last attachment hole	10	00.0	00.4	40.4	55.0	15	00.7	40.7		70.7
ime	L ₆	Carriage length (steel body)		20.9	33.4	43.4	55.9		28.7	40.7	55.7	70.7
	N	Lateral attachment hole spacing			2 N						25	
	e f1	Thread Hole diameter	3.5		IV	3		3.5		IV	13	
	f ₂	Countersink diameter	6					6				
		Thread depth	0		3.	5		0			4	
	 	Step drilling height	3		0.	.0		5			+	
	<u>y</u> 2 m1	Position of lubrication holes			4.	75		5		5	55	
	0	Reference face height			3.						.9	
Load capacity (N)	Co	Static load capacity		1735	3900	5630	7800		3120	5620	8740	11855
Load c: (N	С	Dynamic load capacity		1420	2510	3240	4070		2435	3680	5000	6200
	Μοα	Permissible lateral static torque		10.6	23.8	34.4	47.6		23.7	42.7	66.4	90.1
ant (u	Mol	Permissible longitudinal static torque		3.6	16.3	32.9	61.8		9.4	28.1	65.5	118.6
Torque (Nm)	Μα	Permissible lateral dynamic torque		8.7	15.3	19.8	24.8		18.5	27.9	38.1	47.1
	ML	Permissible longitudinal dynamic torque		3	10.4	18.9	32.2		7.3	18.4	37.6	62
Weight	t s guidev	vay (g/m), carriage (g)	598	29	47	63	81	996	56	81	114	146


.⊳ 29

7

7.2.11 Dimension Tables, Load Capacities, and Moment Loads, for Wider Width MINIRAIL





				Wider width 1	4	W	ider width 18	
		Name	Guideway	NNW	NNNK	Guideway	NNM	MNNL
	Α	System height			9		12	
	В	System width		2	25		30	
	B1	Rail width	14			18		
	B ₂	Distance between reference surfaces			.5		6	
	J	Carriage height		6	.8		8.5	5
	J ₁	Rail height	5.2			7		
	L	Carriage length with wipers		32.1	41.1		40	50
Ê	L1	Longitudinal spacing of attachment holes		10	19		12	24
ш	L2	Longitudinal spacing of attachment holes		-	-		-	-
) SL	L4	Spacing of attachment holes	30	_		30		
sion	L5/L10	Position of first and last attachment hole	10			10		
ens	L6	Carriage length (steel body)		29.6	38.6		37	47
Dimensions (mm)	L8	Lateral attachment hole spacing	-			-		
	N	Lateral attachment hole spacing	_		9		21	
	е	Thread		N.	13		Ma	}
	f1	Hole diameter	3.5			3.5		
	f2	Countersink diameter	6			6		
	g	Thread depth		2	.8		3	
	g 2	Step drilling height	2			2.5		
	m1	Position of lubrication holes	_		.3		4.3	
	0	Reference face height	_	2	.2		3	
Load capacity (N)	Co	Static load capacity		2340	3275		3880	5270
Load ci (N	С	Dynamic load capacity		1230	1550		2140	2645
	Μοα	Permissible lateral static torque		16.6	23.3		35.5	48.2
Torque (Nm)	Mol	Permissible longitudinal static torque		9.3	18		19.4	35.1
Dur (Ni	Μα	Permissible lateral dynamic torque		8.7	11		19.6	24.2
	ML	Permissible longitudinal dynamic torque		4.9	8.5		10.7	17.6
Weight	s guidew	/ay (g/m), carriage (g)	518	25	33	915	47	60

30_

			V	Vider width 2	24	V	Vider width 4	2
		Name	Guideway	NNW	MNNL	Guideway	NNW	MNNL
	Α	System height]	1	4		1	6
	В	System width]	4	10		6	0
	B1	Rail width	24			42		
	B2	Distance between reference surfaces			8)
	J	Carriage height		1	0		1	2
	J ₁	Rail height	8.5			9.5		
	L	Carriage length with wipers	_	46.4	58.9		55.7	73.7
Ê	L1	Longitudinal spacing of attachment holes	_	15	28		20	35
uu uu	L2	Longitudinal spacing of attachment holes		-	-		-	-
Dimensions (mm)	L4	Spacing of attachment holes	40	-		40	-	
sio	L5/L10	Position of first and last attachment hole	15			15		
ien	L6	Carriage length (steel body)	 	43.4	55.9		52.7	70.7
Dim	L8	Lateral attachment hole spacing	-			23		
_	N	Lateral attachment hole spacing	-		28		4	
	e	Thread		I N	//3	4.5	N	14
	f1	Hole diameter	4.5	-		4.5	-	
	f2	Countersink diameter	8		-	8		
	g	Thread depth		3	.5		4	.5
	g 2	Step drilling height	4		75	5		-
	M1	Position of lubrication holes	-		75 .9		5	
-	0	Reference face height	-	3	.9		4	.9
Load capacity (N)	Co	Static load capacity		5630	7800		8110	11855
Load c (I	С	Dynamic load capacity		3240	4070		4750	6200
	Μοα	Permissible lateral static torque		68.2	94.4		171.2	250.2
n) (u	Mol	Permissible longitudinal static torque	1	32.9	61.8		56.8	118.6
Torque (Nm)	Μα	Permissible lateral dynamic torque	1	39.2	49.3		100.3	130.8
	ML	Permissible longitudinal dynamic torque	1	18.9	32.2		33.3	62
Weight	ts guidev	vay (g/m), carriage (g)	1476	84	109	2828	169	231

7.2.12 Lubrication

General

Choice of lubricant is an important consideration and must therefore be defined during the development phase of the machine or application. From experience, choosing the lubricant after the design is finalized leads to significant difficulties later on. A carefully thought out lubrication concept is therefore a feature of a state-of-the-art and well-planned design.

Parameters to be taken into account in selecting the lubricant include:

- Operating conditions (Speed, acceleration, stroke, load, installation orientation)
- External influences (Temperature, aggressive media or radiation, contamination, humidity, vacuum, cleanroom)
- Relubrication
- Compatibility (With other lubricants, with corrosion protection and with integrated materials such as plastic)

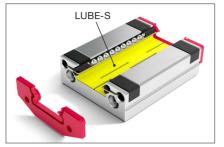
(Period of time, amount, compatibility)

Technical and economic considerations determine the lubricant used.

The guideways should be kept free of cutting oils or water-soluble coolants and lubricants as they thin or wash off the lubricant. In addition, coolants tend to become sticky as they dry out. Lubricants with solid additives are not suitable.

Long-term lubrication

The long-term lubrication LUBE-S from SCHNEEBERGER is covered in chapter 8.1.


Custom lubricants

Specific lubricants are used for specific purposes. For example lubricants for use in vacuums, cleanrooms, for high or low temperatures, for high speeds or high-frequency strokes. SCHNEEBERGER can supply the guideways with the appropriate lubricant for all of these applications.

Additional important information about lubricants is available in chapter 16.3.3.

MINIRAIL Options

8.1 LUBE-S (LS) Long-term Lubrication

LUBE-S is integrated in the carriage and easily replaceable

All types of MNN MINIRAIL carriages can be ordered with optional LUBE-S lubricant. Other carriage types available on request.

The ingenious long-term lubrication LUBE-S is a lubricant reservoir. It applies the lubricant externally in all orientations directly to the ball recirculation tracks by means of the capillary effect. LUBE-S is integrated into the inside of the carriage and lubricates all ball bearings that are directly under load. LUBE-S ensures lubrication even during short-stroke applications (see chapter 6.6.2).

Carriages equipped with LUBE-S are delivered with clearance wipers (see chapter 9.2.1).

LUBE-S applies lubricant to all ball bearings directly under load

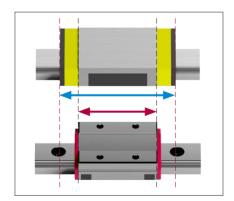
Using the long-term lubrication LUBE-S:

- Maintenance-free for 20,000 km under normal environmental conditions and the corresponding load
- The carriage length remains unchanged and does not affect the maximum stroke
- LUBE-S is the optimal lubricant for all short-stroke applications
- LUBE-S lubricates the ball bearings which are directly under load
- The smoothness, push force and service life are maintained long-term thanks to LUBE-S

The external dimensions of the carriages remain the same. The maximum stroke is

The LUBE-S oil reservoir contacts the ball bearings at a single point. The push forces of the carriages are therefore not affected and the smoothness of

• Maintenance costs are reduced substantially


the MINIRAIL system is maintained at a high level.

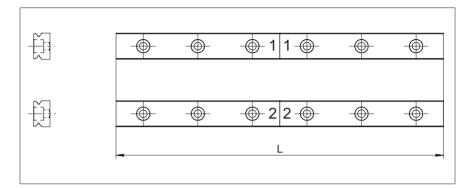
- The minimal consumption of lubricant is good for the environment
- LUBE-S can be easily replaced

A compact solution

therefore not affected.

Smoothness

The carriage length remains unchanged with LUBE-S The travel distances are therefore not affected

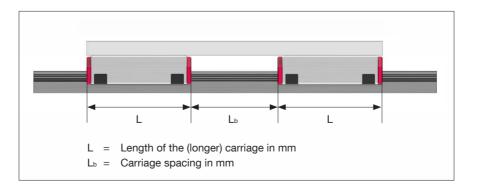

The MINIRAIL guideways should be lubricated during installation. (see also chapter 16.3.3).

8 MINIRAIL Options

8.2 Multi-part Guideways for MINIRAIL (ZG)

If the desired total length of the guideway is longer than the maximum length listed in the catalogue, individual guideways can be joined together with precision butt joints. For this configuration, the ends of the guideways are precision ground. The offset between the individual guideways should not exceed 0.002 mm.

Take note of the numbered guideways at the butt joints during installation.


Multi-part guideways are numbered at the butt joint

8.3 Push Force Defined (VD)

Demanding applications may only be possible if the guideway has a defined push force. These parameters can be defined by SCHNEEBERGER according to customer specifications. Carriages and guideways are then matched and delivered as a set.

8.4 Height-matched Carriages (HA)

In accuracy class G1, the maximum height deviation of the carriages is $\pm 10 \ \mu m$. This tolerance can be too large for certain configurations, for example when the distances among the individual carriages are too small, i.e. when the carriage spacing L_b is smaller than the carriage length L. In such cases, the tolerances can be reduced on a customer-specific basis.

8 MINIRAIL Options

8.5 Customer-specific Lubrication (KB)

The fundamentals of lubrication are described in chapter 12. Special lubricants are used for specific purposes. For example lubricants for use with vacuums, different temperatures, high speeds, heavy loads or high stroke frequencies.

SCHNEEBERGER can supply the guideways with the appropriate lubricant for all of these applications.

8.6 Cleaned and Vacuum-packed (US)

Guideways operated in a vacuum must be cleaned and packaged accordingly. Cleaning takes place in our cleanroom. The packaging consists of an inner, airtight layer and an outer protective layer.

Please state your required cleanroom class (ISO 7 or ISO 6) when making enquiries.

Attention: Attention: We open outer bag do not gateh or punctate inner bag!

MINIRAIL cleaned and vacuum-packed

MINIRAIL Accessories

9.1 Plastic Plugs (MNK)

Plastic plugs for sealing the attachment holes

Plastic plugs in the guideway attachment holes prevent accumulations of dirt.

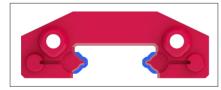
Rail length	Plastic plugs	The plastic plugs can be used with the following types of screws					
	Туре	DIN 912	DIN 7984	DIN 7380			
7	MNK 4	-	-	Х			
9	MNK 6	-	Х	Х			
12	MNK 6	Х	Х	Х			
15	MNK 6	х	х	Х			
14	MNK 6	-	х	Х			
18	MNK 6	х	х	Х			
24	MNK 8	-	х	Х			
42	MNK 8	-	х	X			

9.2 Wipers (AS, AL and OA)

Standard wiper (blue contour = contact surface)

9.2.1 Standard

The wiper brushes across guideway surfaces and tracks and provides optimal protection against contamination.



Clearance wiper (AS)

9.2.2 Alternatives

Clearance wiper (AS)

These precisely finished clearance wipers prevent the migration of dirt particles without affecting the push force of the carriage. The AS wiper is used as standard for the LUBE-S option (see chapter 8.1).

Smooth-running wiper (AL) (blue contour = contact surface)

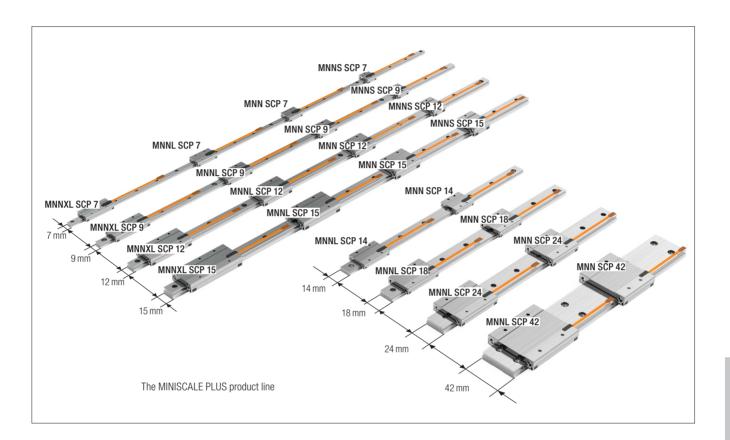
Smooth-running wiper (AL)

A compromise between the standard wiper and the type AS clearance wiper. Cleans the tracks and seals off the guideway surfaces by means of a gap. Only for sizes 7, 9, 12 and 15.

Without wipers (OA)

Without wipers; for use in vacuums, among other applications

9.3 Relubrication Set (MNW)


A relubrication set with KLÜBER Structovis GHD allows the MINIRAIL carriages to be lubricated via the two lubrication holes in the wipers.

Relubrication set (MNW), contents 7 ml

This extraordinary innovation combines «movement» with «measuring» in a highly integrated design. MINISCALE PLUS makes the most compact applications possible and simplifies assembly and installation significantly.

MINISCALE PLUS is based on our MINIRAIL guideways and is available for our entire product range.

_37

10.1 Product Characteristics

MINISCALE PLUS

Highly integrated, compact design

• The measuring sensor is integrated into the carriage and requires no additional installation space

Minimal design planning

• The costs of a separate distance measuring system are not required

Quick and easy installation

- MINISCALE PLUS is delivered ready-to-install
- No need for additional components and special mounting (as would be required for a glass scale, for example)
- Distance measurements do not have to be adjusted
- Mounting a measuring scale is not necessary

Consistently high level of accuracy

- Measurements are made directly as part of normal operation. This significantly reduces the chance of Abbe errors
- Immune to vibration and shock as a single assembly
- The measuring scale is part of the guide rail. This reduces the effect of the thermal aspect ratio and amount of compensation required for the controller

High level of reliability and long service life

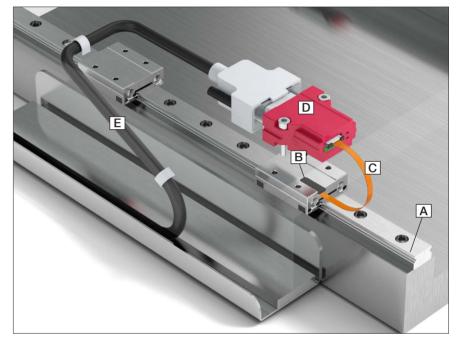
- MINISCALE PLUS is based on the successful MINIRAIL design.
- The dimensional scale is marked directly on the guideway. The sensor is perfectly integrated into the carriage and sealed

10.2 Technical Information and Modifications

10.2.1 Performance Parameters of MINISCALE PLUS

Max. acceleration	300 m/s ²					
Max. speed	5 m/s analog, 3.2 m/s digital					
Preload classes	V1 Preload 0 to 0.03 C (C = dynamic load capacity)					
Accuracy classes	G1					
Materials - guideways, carriages, ball bearings - ball recirculation	Stainless, through-hardened steel POM					
Areas of application - temperature range ⁽¹⁾ - vacuum - humidity - cleanroom	-40° C to +80° C (-40° F to +176° F) On request 10 % to 70 % (non-condensing) Cleanroom class ISO 7 or ISO 6 (in accordance with ISO 14644-1)					
Resolution	TTL output 0.1 µm					
Accuracy ⁽²⁾	1000 mm +/- 10 μm (+/- 5 μm on request) Per 40 mm +/- 4 μm					
Repeatability	Unidirectional+/- 0.1 µmBidirectional+/- 0.2 µm					
Dimensional scale	Pitch100 μmMax. length1000 mmCoefficient of expansion11.7 x 10-6K-1					
Supply voltage	5 V DC +/- 5 %					
Current consumption	60 mA (analog) / 70 mA (digital)					
Output signal	Analog:1 Vpp (at 100 $Ω$)Digital:TTL in accordance with RS 422 standard					
Source format	Differential sin/cos analog signals with reference pulse or Differential, interpolated digital signals (A, B, R) The reference signal is synchronised with the incremental signals					

⁽¹⁾ The standard lubrication covers a temperature range from -20° C to +80° C. Lubricants for other temperatures are available upon request from SCHNEEBERGER.

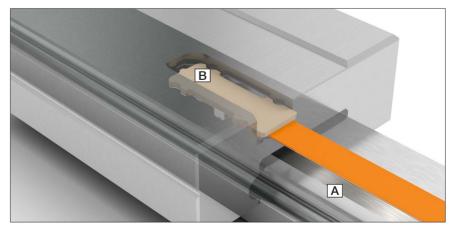

 $^{(2)}\,$ The values apply to a room temperature of 20° C (68° F).

10.2.2 MINISCALE PLUS Components and Working Method

MINISCALE PLUS is an optical, incremental measuring system that consists of the MINIRAIL guide system and the following additional components:

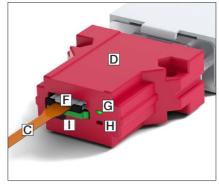
- A Dimensional scale on the guide rail
- B Optical sensor on the carriage
- C Flexible print (must not be exposed to dynamic loads)
- **D** Interface module with D-Sub 9 connector

The control cable ${\bf E}$ with D-Sub 9 connector must be supplied by the customer and be a flexible cable where necessary.

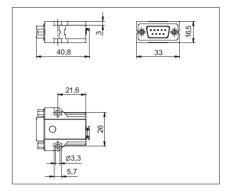


Axis with MINIRAIL, MINISCALE PLUS and interface module

Dimensional scale and optical sensor


The high-precision dimensional scale is part of the hardened guideway's surface with a scale increment of 100 $\mu m.$

The sensor illuminates the dimensional scale and records the optical signals. The raw signals supplied by the sensor are processed by the interface module.



A Dimensional scale on guidewayB Sensor in carriage

Interface module

Interface module with correctly installed flexible print. The LED lights up green

The dimensions of the interface module

The raw signals are processed by the interface module and supplied to the customer's control system in either analog or digital form.

Ensure the ZIF connector **F** is accessible and the LED displays (**G** and **H**) on the interface module are clearly visible. Unlike the analog interface, the digital interface includes a calibration key **I**, which must also be accessible.

- C Flexible print
- D The electronics are in the red housing with D-Sub 9 connector.
- F ZIF connector
- G Green LED
- H Red LED
- I Calibration key (only on digital interface module)

10.2.3 Signal Processing

Further information about signal processing is available from the download section of our website www.schneeberger.com.

Analog output format:

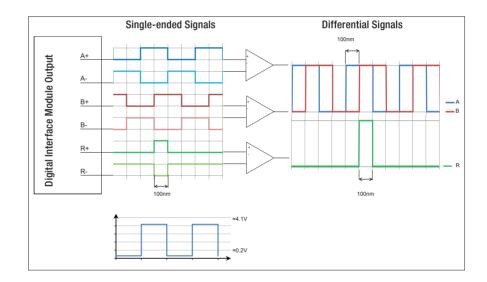
Differential, sin/cos analog signals with reference pulse 1 Vpp (at 100 Ω).

The incremental signals sine and cosine are shifted 90° and correlated with the markings on the encoded scale. An electrical signal period (360°) corresponds precisely to the scale increment of the dimensional scale, which is $100 \,\mu$ m.

The reference pulse always marks electronically the same section of the path of the sine and cosine signals. The point of intersection of the two signals within the reference pulse therefore marks a precisely defined position on the dimensional scale.

The sine signal either lags behind the cosine signal or occurs before it, depending on the direction of movement.

Digital output format:


Differentially interpolated digital signals with reference pulse (A, B, R) TTL signal (RS422).

The digital interface module both processes the raw signal and interpolates the processed analog signal. The interpolation achieves a resolution of 100 nm.

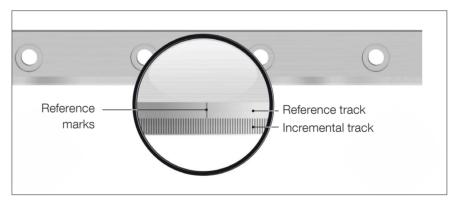
The digital signal waveform consists of an A and B signal. The spacing between the two edges of signals A and B correspond exactly to a distance of 100 nm. The 100 µm increments of the encoder scale are consequently divided into 1000 sections of 100 nm by means of interpolation. The A signal either lags behind the B signal or occurs before it, depending on the direction of movement.

The reference pulse is as wide as the spacing between the two signal edges of signals A and B (100 nm).

The edges of the incremental and reference signals are synchronised.

10.2.4 Reference Marks

Standard version


The reference track is located next to the incremental track. The reference mark is located between the second and third attachment holes as standard (as shown).

Special versions

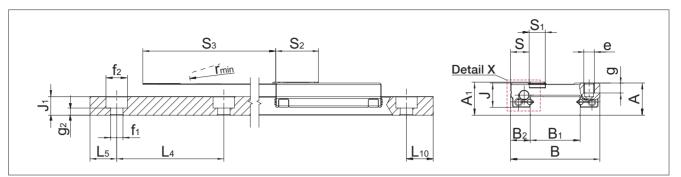
Any number of reference marks can be chosen at any position along the reference track. It is necessary for the reference marks to be synchronised with the dimensional scale. Specifically this means that the reference marks can only be placed in multiples of 0.1 mm, since the pitch of the dimensional scale is 0.1 mm. A minimum distance of 1.5 mm between the reference marks should be maintained.

Restrictions

- The attachment holes on guideways of type MN 7 and MN 9 are located on the reference track. The reference marks must therefore be BETWEEN the attachment holes for both of these sizes.
- When specifying the reference mark(s), ensure they can be seen by the carriage's sensor.

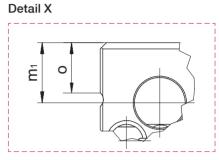
MINISCALE PLUS guideway with dimensional scale

10.2.5 Interface Module Pin Connections

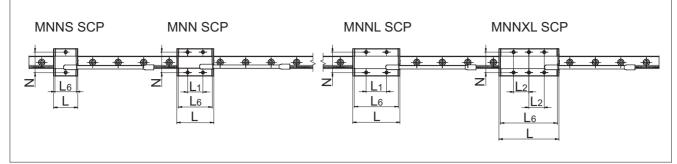

Analog interface module pin connections (1Vpp)

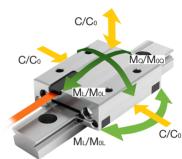
Pin	Signal	Signal type
1	Ua1 -	Sine-
2	GND	Supply voltage
3	Ua2 -	Cosine-
4	ERR NOT	Error signal
5	Ua0 -	Reference signal -
6	Ua1 +	Sine +
7	+5V DC	Supply voltage
8	Ua2 +	Cosine +
9	Ua0 +	Reference signal +
9	NCos	

Digital interface module pin connections (TTL/CMOS)

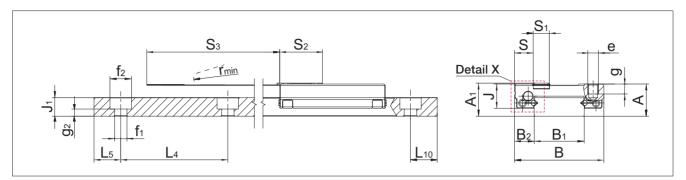

Pin	Signal	Signal type
1	A-	Quadrature signal
2	GND	Supply voltage
3	B-	Quadrature signal
4	ERR NOT	Error signal
5	R -	Reference signal
6	A+	Quadrature signal
7	+5V DC	Supply voltage
8	B+	Quadrature signal
9	R +	Reference signal

10.2.6	Dimension Tables,	Load Capacities,	and Moment Loads for	Standard Width MINISCALE PLUS
--------	-------------------	------------------	----------------------	-------------------------------

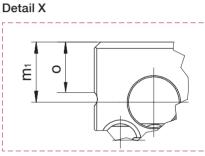




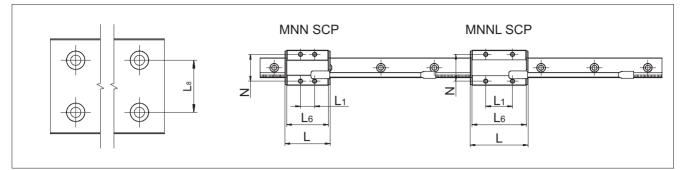
Please contact SCHNEEBERGER for applications with a single MINISCALE PLUS carriage type MNNS 7, 9, 12 or 15.

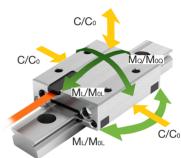


			Standard size 7					Sta	ndard siz	ze 9		
		Name	Guideway	MNNS SCP	MNN SCP	MNNL SCP	MNNXL SCP	Guideway	MNNS SCP	MNN SCP	MNNL SCP	MNNXL SCP
	Α	System height			{	3				1	0	
	A1	System height with sensor			9	.2				I	0	
	В	System width			1	7				2	0	
	B1	Rail width	7					9				
	B ₂	Distance between reference surfaces			Ę	5				5	.5	
	J	Carriage height			6	.5				8	3	
	J ₁	Rail height	4.5					5.5				
	L	Carriage length with wipers only for LUBE-S		18.6	24.6	32.1	41.1		22	32	40	50
	L1	Longitudinal spacing of attachment holes		-	8	13	20		-	10	16	26
	L2	Longitudinal spacing of attachment holes		-	-	-	10		-	-	-	13
Ê	L4	Spacing of attachment holes	15					20				
Ē	L5/L10	Position of first and last attachment hole	5					7.5				
SU	L ₆	Carriage length (steel body)		16.1	22.1	29.6	38.6		19	29	37	47
sio	N	Lateral attachment hole spacing			1					1		
Dimensions (mm)	е	Thread			N						13	
Din	f ₁	Hole diameter	2.4					3.5			-]
	f ₂	Countersink diameter	4.2					6				
	g	Thread depth			2	.5					3	
	g 2	Step drilling height	2.2					2				
	 1	Position of lubrication holes			3	.1				3	.8	
	0	Reference face height			2					3		
	S	Distance from sensor			3						.6	
	S1	Sensor width			5					4		
	S2	Sensor length				3.5					2.5	
	S3	Length of the flexible printed circuit board			7					7		
	ľmin	Permitted radius				2					2	
ty (N)	Co	Static load capacity		935	1560	2340	3275		1385	2770	3880	5270
Load capacity (N)	С	Dynamic load capacity		645	925	1230	1550		1040	1690	2140	2645
	Μοα	Permissible lateral static torque		3.4	5.6	8.4	11.8		6.5	12.9	18.1	24.5
Torque (Nm)	Mol	Permissible longitudinal static torque		1.6	4.3	9.3	18		2.8	10.2	19.4	35.1
orque (Nm)	Μα	Permissible lateral dynamic torque		2.3	3.3	4.4	5.6		4.8	7.9	9.9	12.3
	Mi	Permissible longitudinal dynamic torque		1.1	2.5	4.9	8.5		2.1	6.2	10.7	17.6
Weight		way (g/m), carriage (g)	216	9	13	1.0	23	309	16	24	31	40
noigh	o guido	(gring), surfugo (gr		0	10	10	20		10	<i>L</i> 1	01	10



			Standard size 12					Star	idard siz	e 15		
		Name	Guideway	MNNS SCP	MNN SCP	MNNL SCP	MNNXL SCP	Guideway	MNNS SCP	MNN SCP	MNNL SCP	MNNXL SCP
	A	System height			1	0					6	
	A1	System height with sensor										
	В	System width			2	7				3	32	
	B1	Rail width	12					15				
	B ₂	Distance between reference surfaces			7.						.5	
	J	Carriage height			1	0				1	2	
	J1	Rail height	7.5					9.5				
	L	Carriage length with wipers only for LUBE-S		23.9	36.4	46.4	58.9		31.7	43.7	58.7	73.7
	L1	Longitudinal spacing of attachment holes		-	15	20	30		-	20	25	40
	L2	Longitudinal spacing of attachment holes		-	-	-	15		-	-	-	20
Ē	L4	Spacing of attachment holes	25					40				
L E	L5/L10	Position of first and last attachment hole	10					15				
Suc	L6	Carriage length (steel body)		20.9	33.4	43.4	55.9		28.7	40.7	55.7	70.7
Insid	N	Lateral attachment hole spacing			2						25	
Dimensions (mm)	е	Thread			N	13				Ν	13	
Ē	f1	Hole diameter	3.5					3.5				
	f2	Countersink diameter	6					6				
	g	Thread depth			3.	.5				4	4	
	g 2	Step drilling height	3					5				
	M 1	Position of lubrication holes			4.						55	
	0	Reference face height			3.						.9	
	S	Distance from sensor			7.						.7	
	S1	Sensor width			4.						.6	
	S 2	Sensor length			12					12		
	S 3	Length of the flexible printed circuit board			7						'5	
	ľmin	Permitted radius			2	2					2	
Load capacity (N)	Co	Static load capacity		1735	3900	5630	7800		3120	5620	8740	11855
Lc capac	С	Dynamic load capacity		1420	2510	3240	4070		2435	3680	5000	6200
	Μοα	Permissible lateral static torque		10.6	23.8	34.4	47.6		23.7	42.7	66.4	90.1
Torque (Nm)	Mol	Permissible longitudinal static torque		3.6	16.3	32.9	61.8		9.4	28.1	65.5	118.6
1 d Z	Μα	Permissible lateral dynamic torque		8.7	15.3	19.8	24.8		18.5	27.9	38.1	47.1
	ML	Permissible longitudinal dynamic torque		3	10.4	18.9	32.2		7.3	18.4	37.6	62
Weigh	ts guidev	vay (g/m), carriage (g)	598	29	47	63	81	996	56	81	114	146




10.2.7 Dimension Tables, Load Capacities and Moment Loads for Wider Width MINISCALE PLUS.

				Wide size 14			Nide size 18	
		Name	Guideway	MNN SCP	MNNL SCP	Guideway	MNN SCP	MNNL SCP
	А	System height		G)		12	
	A1	System height with sensor		1	0		12	
	В	System width		2	5		30)
	B1	Rail width	14			18		,
	B ₂	Distance between reference surfaces		5.	5		6	
	J	Carriage height		6.	8		8.5	ō
	J ₁	Rail height	5.2			7		
	L	Carriage length with wipers only for LUBE-S		32.1	41.1		40	50
	L1	Longitudinal spacing of attachment holes		10	19		12	24
	L2	Longitudinal spacing of attachment holes		-	-		-	-
	L4	Spacing of attachment holes	30			30		
Dimensions (mm)	L5/L10	Position of first and last attachment hole	10			10		
IS (I	L6	Carriage length (steel body)		29.6	38.6		37	47
ion	L8	Lateral attachment hole spacing	-			-		
ens	Ν	Lateral attachment hole spacing		1			21	
jū	е	Thread		M	3		M	3
	f1	Hole diameter	3.5			3.5		
	f2	Countersink diameter	6			6		
	g	Thread depth		2.	8		3	
	g 2	Step drilling height	2			2.5		
	M 1	Position of lubrication holes		3.			4.3	
	0	Reference face height		2.			3.1	
	S	Distance from sensor		5.			6.2	
	S 1	Sensor width		5.			4.6	
	S 2	Sensor length		13			12.	
	S 3	Length of the flexible printed circuit board		7			75	
	ľmin	Permitted radius		2	2		2	
N N	Co	Static load capacity		2340	3275		3880	5270
Load capacity (N)	С	Dynamic load capacity		1230	1550		2140	2645
	Μοα	Permissible lateral static torque		16.6	23.3		35.5	48.2
Torque (Nm)	Mol	Permissible longitudinal static torque		9.3	18		19.4	35.1
Torque (Nm)	Μα	Permissible lateral dynamic torque		8.7	11		19.6	24.2
	M∟	Permissible longitudinal dynamic torque		4.9	8.5		10.7	17.6
Weight	s guidew	ay (g/m), carriage (g)	518	25	33	915	47	60

48_

				Wide size 24			Wide size 42	
		Name	Guideway	MNN SCP	MNNL SCP	Guideway	MNN SCP	MNNL SCP
	Α	System height		-	4]	-	0
	A1	System height with sensor	_	1	4		I	6
	В	System width		4	0		6	0
	B1	Rail width	24			42		
	B ₂	Distance between reference surfaces		8	3		(9
	J	Carriage height		1	0		1	2
	J ₁	Rail height	8.5			9.5		
	L	Carriage length with wipers only for LUBE-S		46.4	58.9		55.7	73.7
	L ₁	Longitudinal spacing of attachment holes		15	28		20	35
	L2	Longitudinal spacing of attachment holes		-	-		-	-
=	L4	Spacing of attachment holes	40			40		
Dimensions (mm)	L5/L10	Position of first and last attachment hole	15			15		
IS (I	L ₆	Carriage length (steel body)		43.4	55.9		52.7	70.7
ion	L8	Lateral attachment hole spacing	-			23		
ens	N	Lateral attachment hole spacing			8			5
jü	е	Thread		N	13		l IV	14
	f1	Hole diameter	4.5			4.5		
	f2	Countersink diameter	8			8		
	g	Thread depth		3	.5		4	.5
	g 2	Step drilling height	4			5		
	m 1	Position of lubrication holes			75		5	
	0	Reference face height			.9			.9
	S	Distance from sensor			.2		9	
	S1	Sensor width			.6			.6
	S 2	Sensor length			2.5			2.5
	S 3	Length of the flexible printed circuit board			5			5
	ľmin	Permitted radius	_		2			2
v (N	Co	Static load capacity		5630	7800		8110	11855
Load capacity (N)	С	Dynamic load capacity		3240	4070		4750	6200
	Μοα	Permissible lateral static torque		68.2	94.4	1	171.2	250.2
Torque (Nm)	Mol	Permissible longitudinal static torque		32.9	61.8		56.8	118.6
(Nm)	Μα	Permissible lateral dynamic torque		39.2	49.3	1	100.3	130.8
	ML	Permissible longitudinal dynamic torque	7	18.9	32.2	1	33.3	62
Weigh	ts guidev	way (g/m), carriage (g)	1476	84	109	2828	169	231

10.2.8 Lubrication

General

Lubrication is a design element and must therefore be defined during the development phase of a machine or application. If the lubrication is specified after design and construction is complete, this is likely to lead to operational difficulties. A carefully thought out lubrication concept is therefore a sign of a state-of-the-art and well devised design.

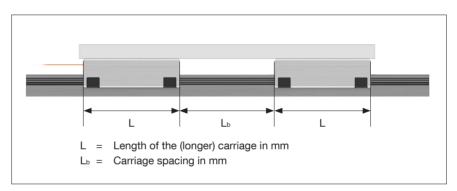
Parameters to be taken into account in selecting the lubricant include:

- Operating conditions (speed, acceleration, stroke, load, installation orientation)
- External influences (temperature, aggressive media or radiation, contamination, humidity, vacuum, cleanroom)
- Relubrication (Period of time, amount, compatibility)
- Compatibility (with other lubricants, with corrosion protection and with integrated materials such as plastic)

Technical and economic considerations determine the lubricant used.

The guideways should be kept free of cutting oils or water-soluble coolants as they thin or wash off the lubricant. In addition, coolants tend to stick when drying out. Lubricants with solid additives are not suitable.

Additional important information on lubrication is given in chapter 16.3.4.


MINISCALE PLUS Options

11.1 Push Force Defined (VD)

Demanding applications may only be possible if the guideway has a defined push force. These parameters can be defined by SCHNEEBERGER according to customer specifications. Carriages and guideways are then matched and delivered as a set.

11.2 Height-matched Carriages (HA)

In accuracy class G1, the maximum height deviation of the carriages is $\pm 10 \ \mu m$. This tolerance can be too large for certain configurations, for example when the distances among the individual carriages is too small, i.e. when the carriage spacing L_b is smaller than the carriage length L. In such cases, the tolerances can be reduced on a customer-specific basis.

11.3 Customer-specific Lubrication (KB)

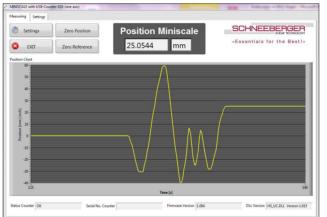
The fundamentals of lubrication are described in chapter 7.2.12. Special lubricants are used for specific purposes. For example lubricants for use with vacuums, different temperatures, high speeds, heavy loads or high stroke frequencies.

SCHNEEBERGER can supply the guideways with the appropriate lubricant for all of these applications.

MINISCALE PLUS Accessories

12.1 MINISCALE PLUS Counter and Position Indicator

1-axis USB counter 026


12.1.1 1-axis USB Counter 026

The USB counter 026 allows a MINISCALE PLUS or similar incremental encoder with TTL, 1 Vpp, or 11 μAss signal output to be connected directly to a computer using a USB interface.

- Counter analysis for signal encoders with TTL, 1 Vpp, or 11 µAss signal output
- USB-B connection
- Compact enclosure
- Simple installation
- For Windows XP/Vista/7 operating systems

Driver:

The USB counter 026 comes with the PC software required for operation. A DLL file is available for customers that wish to write their own software applications.

Demo software 1-axis USB counter 026

12.1.2 3-axis USB Counter 046

The USB counter 046 allows three MINISCALE PLUS or similar incremental encoders with TTL, or 1 Vpp signal output to be connected directly to a computer using a USB interface. Every counter input additionally has a latch signal input at its disposal.

- Counter analysis for three signal encoders with 1 Vpp- or TTL signal output
- Latch signal analysis and counter latch synchronisation
- USB-B connection
- Simple installation
- For Windows XP/Vista/7 operating systems

Driver:

A DLL file is available for the development of custom software.

2 MINISCALE PLUS Accessories

2-axis position indicator SIRIUS II

12.1.3 2-axis Position Indicator SIRIUS II

The measured values are depicted on the TFT colour display in both axes through analysis of incremental encoders. Versions for encoders with 11 μ Ass, 1 Vpp or TTL are available. The reference analysis also recognises coded measuring scales.

The Sirius II can save up to 99 reference points even in the event of a power failure. Data collected include the axis, unit of measurement, counting direction and a reference/ adapter unit.

Additionally, the Sirius II features a memory for up to 500 tools. The tool identification number, tool name, and reference point and tool target values are recorded for this purpose.

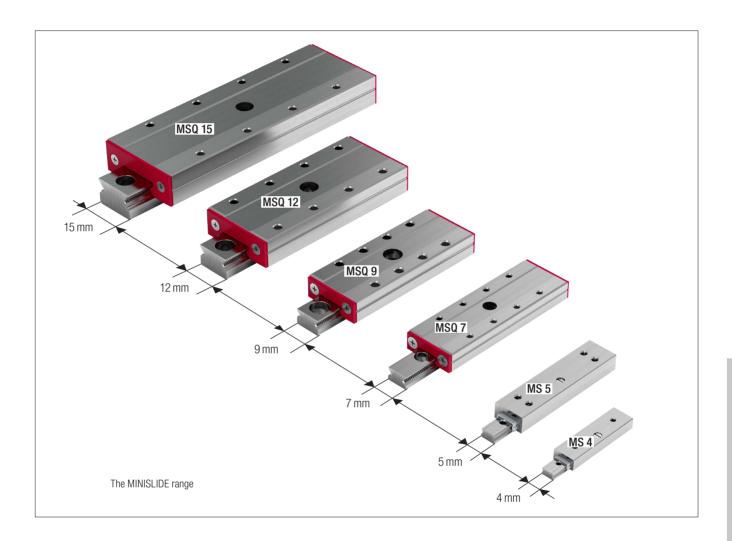
- Brilliant 6.4" or 10.4" TFT colour display
- Compact enclosure
- Convenient menu navigation with a mouse
- Integrated on-screen keyboard
- Counter analysis for two signal inputs, optionally for 11 µAss, 1 Vpp or TTL signals
- Serial and USB interface
- Power failure safe memory for up to 99 reference points (adapter) and 500 tools
- Postprocessor function for control-specific data transmission of a series of measurements
- Absolute measurement representation
- Increment selection to set the axis display to zero
- Radius/diameter switch
- Measured value stop function

Postprocessor (optional):

This operating mode is intended for creating a series of measurements with data sets that can be transferred to a machine tool in a control-specific format.

12 MINISCALE PLUS Accessories

12.2 ESD Wrist Strap Set


MINISCALE PLUS is sensitive to electrostatic discharge! The electronics can be damaged if precautions are not taken against ESD. ESD regulations should therefore be observed when handling ESD-vulnerable parts (EN 100015-1). This includes wearing an ESD wrist strap, as depicted below, to avoid electrostatic discharge during installation.

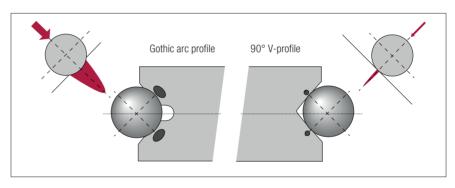
ESD wrist strap set

Demanding applications demand extraordinary guideways. MINISLIDE embodies the new generation of miniature guideways for demanding applications. They are extremely robust and prove themselves in every application with their high level of smoothness, precision and reliability.

The MINISLIDE range includes sizes 4, 5, 7, 9, 12 and 15 with travel distances from 6 to 102 mm.

13.1 MINISLIDE MS Product Characteristics

13.1.1 Extensive Range


The type MS range includes rail widths of 4 and 5 mm, available, depending on type, in four or five different lengths and strokes.

MS 5	
System lengths in mm:	15 – 50
Strokes in mm:	8 – 42
MS 4	
System lengths in mm:	10 – 25
Strokes in mm:	6 – 22

MINISLIDE	MS	range
-----------	----	-------

13.1.2 Maximum Load Carrying Capacity and Compact Form

The Gothic arc profile of MINISLIDE MS guideways allows for load capacities up to 15 times higher than those of a 90° V-profile. MINISLIDE MS therefore allows for compact and robust constructions whilst keeping weight to a minimum.

The gothic arc guideway profile compared to the 90° V-profile

13.1.3 Integrated Cage Centering Feature

MINISLIDE MS 4 and MS 5 have a one-piece plastic cage at their disposal to counteract the effects of cage creep. The cage is positioned using the integrated cage centering feature.

13.2 MINISLIDE MSQ Product Characteristics

13.2.1 Extensive Range

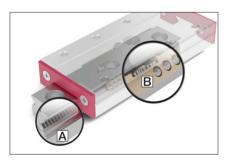
The type MSQ range includes rail widths of 7, 9, 12 and 15 mm, available, depending on type, in four or five different lengths and strokes.

MSQ 15

System lengths in mm:	70 – 130
Strokes in mm:	66 – 102
MSQ 12	
System lengths in mm:	50 – 100
Strokes in mm:	45 - 70

MSQ 9

System lengths in mm:	40 - 80
Strokes in mm:	34 – 66

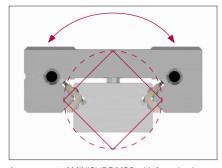

IVISQ /	
System lengths in mm:	30 – 70
Strokes in mm:	20 – 58

13.2.2 High Speed and Acceleration

High-acceleration applications demand well thought-out solutions. With its unique design with integrated cage control, MINISLIDE MSQ fulfills the requirements of the most modern of propulsion technologies and allows for speeds of up to 3 m/s and acceleration of up to 300 m/s^2 .

 $\label{eq:MINISLIDE MSQ allows for speeds of 3 m/s and acceleration of 300 m/s^2$

The robust cage control of MINISLIDE MSQ **A** gear rack pinion on carriage and guideway **B** cage with pinion

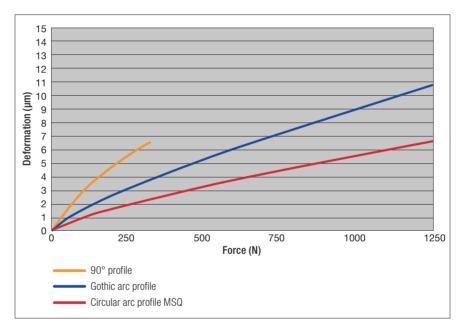

13.2.3 High Process Reliability Thanks to Cage Control

The cage is free to move along the longitudinal axis on every linear guideway. The cage generally moves out of the center position as a result of uneven weight distribution, high acceleration, vertical installation or temperature differences. This so-called cage creep compromises the efficiency of every application, since the cage must be centered regularly using corrective strokes at the expense of energy.

MINISLIDE MSQ products are fitted with a well-engineered, robust cage control system which eliminates cage creep. The gear rack pinion of the control system is directly integrated into the carriages and guideways. The cages and pinions are made from high-quality plastic.

The compact, robust design as well as the minimum of integrated components ensure the highest strength in every commercial situation.

A mechanical limited stroke protects the cage control mechanism and makes installation and maintenance easy (this must not be used during operation as a means to limit stroke).



13.2.4 Maximum Rigidity and Load Capacities

MINISLIDE MSQ products have four tracks with a circular arc profile. Their arrangement in the shape of an O ensures large inner spacings. In combination with the tracks offset by 90 degrees, a high level of evenly distributed force from all directions is achieved, as well as torque rigidity.

Arrangement of MINISLIDE MSQ with four circular arc profile tracks in an O shape

MINISLIDE products are preloaded with zero backlash. Combined with the high number of rolling elements, a high level of system rigidity and therefore the highest precision are guaranteed.

Comparison of the rigidity of structurally identical MINISLIDE size 9-80.66 with different contouring of the guideway tracks. The circular arc profile of MSQ results in the lowest deformation and therefore the highest rigidity

13.3 Technical Information and Alternative Variants

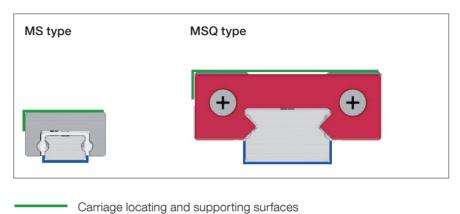
Max. acceleration	50 m/s ²
Max. speed	1 m/s
Preload	Zero backlash
Accuracy	See chapters 13.3.4 and 13.3.5
Materials	
- guideways, carriages, ball bearings	Stainless, through-hardened steel
- cage	POM
Areas of application	
- temperature range (1)	-40° C to +80° C (-40° F to +176° F)
- vacuum (2)	Vacuum (max. 10 ⁻⁷ mbar)
- humidity	10 % – 70 % (non-condensing)
- cleanroom	Cleanroom class ISO 7 or ISO 6
	(in accordance with ISO 14644-1)

13.3.1 MINISLIDE MS Performance Parameters

⁽¹⁾ The standard lubrication covers a temperature range from -20° C to +80° C. Lubricants for other temperatures are available on request from SCHNEEBERGER.

⁽²⁾ The suitability for a vacuum depends on the materials used. Use in a vacuum requires a special lubricant which can be requested from SCHNEEBERGER. So that no air remains trapped in the blind holes, the fastening screws must be vented.

13.3.2 MINISLIDE MSQ Performance Parameters

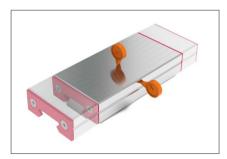

Max. acceleration	300 m/s ²
Max. speed	3 m/s
Preload	Zero backlash
Accuracy	See chapters 13.3.4 and 13.3.5
Materials - guideways, carriages, ball bearings - cage and pinion - end pieces	Stainless, through-hardened steel PEEK PEEK
Areas of application - temperature range ⁽¹⁾ - vacuum ⁽²⁾ - humidity - cleanroom	-40° C to +150° C (-40° F to +302° F) Vacuum (max. 10 ⁻⁷ mbar) 10 % – 70 % (non-condensing) Cleanroom class ISO 7 or ISO 6 (in accordance with ISO 14644-1)

⁽¹⁾ The standard lubrication covers a temperature range from -30° C to +120° C. Lubricants for other temperatures are available on request from SCHNEEBERGER.

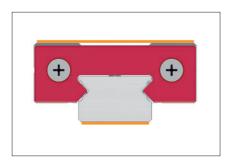
⁽²⁾ The suitability for a vacuum depends on the materials used. In order to use MSQ in a vacuum, the fastening screws must be removed from the front plates. Use in a vacuum requires a special lubricant which can be requested from SCHNEEBERGER. So that no air remains trapped in the blind holes, the fastening screws must be vented.

13.3.3 Reference and Supporting Surfaces

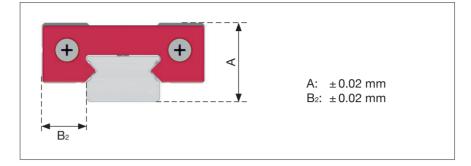
The locating and supporting surfaces of carriages and guideways are designated as follows.


Guideway locating and supporting surfaces

The reference side of the carriage is opposite the carriage side with the company logo / type designation. The guideway can be located on both sides.


13.3.4 Running Accuracy and Parallelism of Supporting Surfaces

The tolerance for the straightness of the stroke depends on the length of the guideway.


The following table shows the corresponding maximum values. The measurements are taken in an unloaded state on a flat surface.

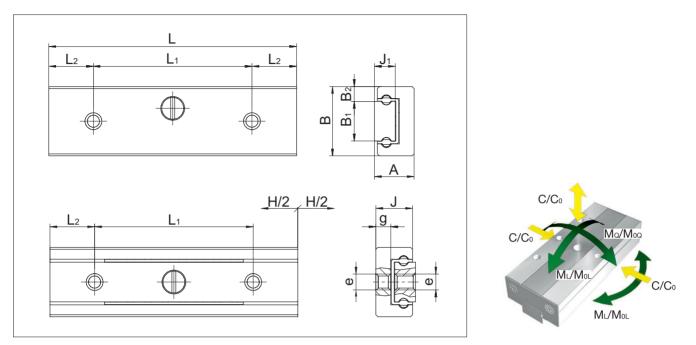
System length L	Straightness of the stroke horizontally and vertically
10 – 30 mm	3 μm
40 – 80 mm	4 µm
90 – 130 mm	5 µm

System length L	Parallelism of the supporting surfaces (frictionless table in the center position)
10 - 30 mm	12 µm
40 – 80 mm	15 µm
90 – 130 mm	18 µm

13.3.5 Tolerance of the Total Height

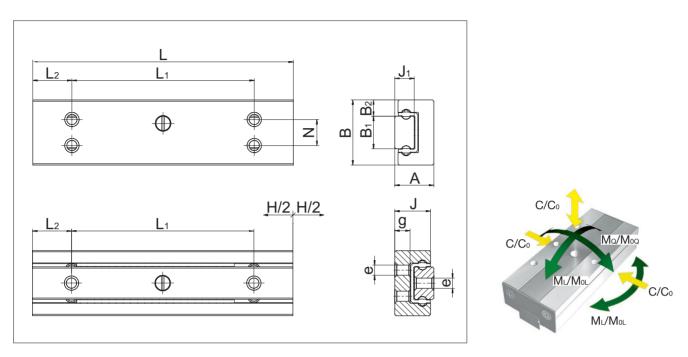
13.3.6 Push Force and Preload

The push force is influenced by the preload and the lubricant used. MINISLIDE guideways are delivered with zero backlash and slightly preloaded as standard.

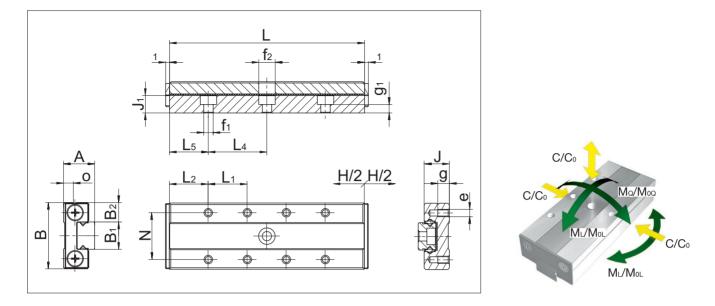

The carriages can be delivered with a defined push force on request (see chapter 14.1).

13.3.7 Friction and Smoothness

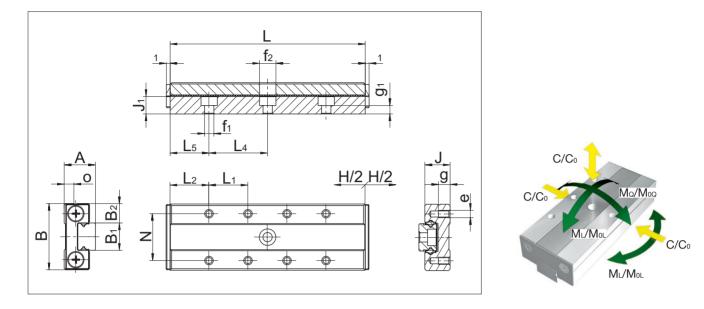
SCHNEEBERGER places high value on smoothness during manufacturing. The accuracy of the surfaces and materials is of the highest priority. This also applies with respect to the rolling elements used, which must satisfy the most stringent quality demands. Under normal operating conditions a coefficient of friction of 0.003 can be assumed.


13.3.8 Dimension Tables, Load Capacities, Weights and Moment Loads

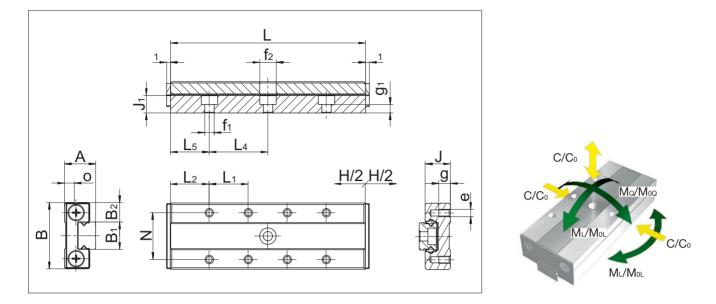
MS 4


			Sizes			
	Nan	10	MS 4-10.6	MS 4-15.12	MS 4-20.15	MS 4-25.22
	А	System height	4	4	4	4
	В	System width	7	7	7	7
	B1	Rail width	4	4	4	4
	B ₂	Distance between locating surfaces	1.5	1.5	1.5	1.5
Ê	J	Carriage height	3.7	3.7	3.7	3.7
Dimensions (mm)	J ₁	Rail height	2.1	2.1	2.1	2.1
sions	Н	Stroke	6	12	15	22
nens	L	System length	10	15	20	25
Dir	L1	Attachment hole spacing	5	8	12	16
	L2	Attachment hole start/end spacing	2.5	3.5	4	4.5
	е	Thread	MI.6	MI.6	M1.6	MI.6
	g	Usable thread length	1.5	1.5	1.5	1.5
		Ball diameter	1	1	1	1
Load capacity (N)	Co	Static load capacity	277	347	485	555
Load ca (N	С	Dynamic load capacity	207	242	307	337
	Μοα	Permissible lateral static torque	0.60	0.75	1.04	1.19
Torque (Nm)	Mol	Permissible static torque lengthwise	0.40	0.61	1.13	1.46
Torque (Nm)	Μα	Permissible lateral dynamic torque	0.45	0.52	0.66	0.72
	M∟	Permissible dynamic torque lengthwise	0.30	0.42	0.72	0.88
Weigh	nt (g)		1.7	2.6	3.4	4.3

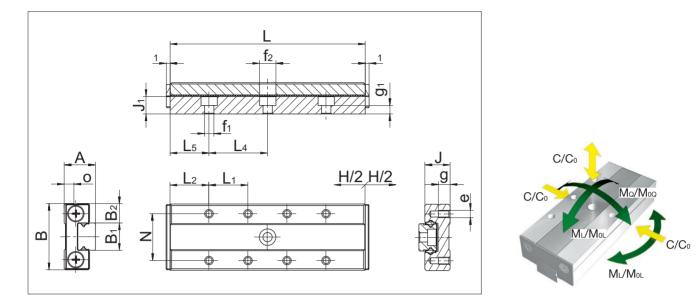
MS 5


			Sizes				
	Nan	10	MS 5-15.8	MS 5-20.13	MS 5-30.20	MS 5-40.31	MS 5-50.42
	А	System height	6	6	6	6	6
	В	System width	10	10	10	10	10
	B1	Rail width	5	5	5	5	5
	B2	Distance between locating surfaces	2.5	2.5	2.5	2.5	2.5
	J	Carriage height	5.5	5.5	5.5	5.5	5.5
mm)	J1	Rail height	3	3	3	3	3
Dimensions (mm)	Н	Stroke	8	13	20	31	42
ensic	L	System length	15	20	30	40	50
Dime	L ₁	Attachment hole spacing	8	12	20	28	36
	L2	Attachment hole start/end spacing	3.5	4	5	6	7
	Ν	Lateral attachment hole spacing	4	4	4	4	4
	е	Thread	M2	M2	M2	M2	M2
	g	Usable thread length	2.35	2.35	2.35	2.35	2.35
		Ball diameter	1.5	1.5	1.5	1.5	1.5
Load capacity (N)	Co	Static load capacity	780	936	1404	1716	2028
Load ca	С	Dynamic load capacity	568	645	857	987	1109
	Μοα	Permissible lateral static torque	2.18	2.62	3.93	4.80	5.68
Torque (Nm)	Mol	Permissible static torque lengthwise	1.72	2.4	5.15	7.55	10.4
Lor N	Μα	Permissible lateral dynamic torque	1.59	1.81	2.40	2.76	3.11
	ML	Permissible dynamic torque lengthwise	1.25	1.66	3.14	4.34	5.69
Weigh	nt (g)		5.4	7.3	11	14.8	18.6

MSQ 7


			Sizes					
	Name		MSQ 7-30.20	MSQ 7-40.28	MSQ 7-50.36	MSQ 7-60.50	MSQ 7-70.58	
	А	System height	8	8	8	8	8	
	В	System width	17	17	17	17	17	
	B1	Rail width	7	7	7	7	7	
	B ₂	Distance between locating surfaces	5	5	5	5	5	
	J	Carriage height	6.5	6.5	6.5	6.5	6.5	
	J ₁	Rail height	4.5	4.5	4.5	4.5	4.5	
	Н	Stroke	20	28	36	50	58	
Ê	L	System length	30	40	50	60	70	
Dimensions (mm)	L1	Attachment hole spacing	10	10	10	10	10	
sion	L2	Attachment hole start/end spacing	10	10	10	10	10	
nen	L ₄	Attachment hole spacing	15	15	15	15	15	
Di	L ₅	Attachment hole start/end spacing	7.5	5	10	7.5	5	
	Ν	Lateral attachment hole spacing	12	12	12	12	12	
	е	Thread	M2	M2	M2	M2	M2	
	f1	Attachment hole diameter	2.4	2.4	2.4	2.4	2.4	
	f2	Screw hole diameter	4.2	4.2	4.2	4.2	4.2	
	g	Usable thread length	3	3	3	3	3	
	g 1	Clamping length	2.2	2.2	2.2	2.2	2.2	
		Ball diameter	1	1	1	1	1	
Load capacity (N)	Co	Static load capacity	1193	1670	2148	2386	2864	
Load c (1	С	Dynamic load capacity	609	770	919	989	1124	
	Μοα	Permissible lateral static torque	5.1	7.2	9.2	10.3	12.3	
Torque (Nm)	Mol	Permissible static torque lengthwise	5.0	8.6	13.1	15.8	21.8	
D To	Μα	Permissible lateral dynamic torque	2.6	3.3	4.0	4.3	4.8	
	ML	Permissible dynamic torque lengthwise	2.5	4.0	5.6	6.5	8.5	
Weigh	nt (g)		24.5	32.6	40.5	48.5	56.3	

MSQ 9


					Sizes		
	Nam	16	MSQ 9-40.34	MSQ 9-50.42	MSQ 9-60.50	MSQ 9-70.58	MSQ 9-80.66
	А	System height	10	10	10	10	10
	В	System width	20	20	20	20	20
	B1	Rail width	9	9	9	9	9
	B ₂	Distance between locating surfaces	5.5	5.5	5.5	5.5	5.5
	J	Carriage height	8	8	8	8	8
	J1	Rail height	5.5	5.5	5.5	5.5	5.5
	Н	Stroke	34	42	50	58	66
Ê	L	System length	40	50	60	70	80
Dimensions (mm)	L1	Attachment hole spacing	10	10	10	10	10
sion	L2	Attachment hole start/end spacing	10	10	10	10	10
nen	L4	Attachment hole spacing	20	20	20	20	20
Dir	L ₅	Attachment hole start/end spacing	10	5	10	5	10
	Ν	Lateral attachment hole spacing	15	15	15	15	15
	е	Thread	M3	M3	M3	M3	M3
	f1	Attachment hole diameter	3.5	3.5	3.5	3.5	3.5
	f2	Screw hole diameter	6	6	6	6	6
	g	Usable thread length	3	3	3	3	3
	g1	Clamping length	2	2	2	2	2
		Ball diameter	1	1	1	1	1
Load capacity (N)	Co	Static load capacity	1432	1909	2386	2864	3341
Load c (1	С	Dynamic load capacity	692	846	989	1124	1252
	Μοα	Permissible lateral static torque	7.6	10.1	12.6	15.2	17.7
Torque (Nm)	Mol	Permissible static torque lengthwise	6.7	10.8	15.8	21.8	28.7
D To	Μα	Permissible lateral dynamic torque	3.7	4.5	5.2	6.0	6.6
	M∟	Permissible dynamic torque lengthwise	3.2	4.8	6.5	8.5	10.7
Weigh	t (g)		45.6	56.9	68.1	79.2	90.3

MSQ 12

				Siz	zes	
	Nam	10	MSQ 12-50.45	MSQ 12-60.48	MSQ 12-80.63	MSQ 12-100.70
	А	System height	13	13	13	13
	В	System width	27	27	27	27
	B1	Rail width	12	12	12	12
	B ₂	Distance between locating surfaces	7.5	7.5	7.5	7.5
	J	Carriage height	10	10	10	10
	J ₁	Rail height	7.5	7.5	7.5	7.5
	Н	Stroke	45	48	63	70
Ê	L	System length	50	60	80	100
Dimensions (mm)	L1	Attachment hole spacing	15	15	15	15
sions	L2	Attachment hole start/end spacing	10	7.5	10	12.5
nens	L4	Attachment hole spacing	25	25	25	25
Dir	L ₅	Attachment hole start/end spacing	12.5	5	15	12.5
	Ν	Lateral attachment hole spacing	20	20	20	20
	е	Thread	M3	M3	M3	M3
	f1	Attachment hole diameter	3.5	3.5	3.5	3.5
	f2	Screw hole diameter	6	6	6	6
	g	Usable thread length	3.5	3.5	3.5	3.5
	g 1	Clamping length	3	3	3	3
		Ball diameter	1.5	1.5	1.5	1.5
Load capacity (N)	Co	Static load capacity	2685	3759	5370	7518
Load c	С	Dynamic load capacity	1427	1806	2318	2934
	Μοα	Permissible lateral static torque	18.9	26.5	37.9	53.0
Torque (Nm)	Mol	Permissible static torque lengthwise	15.7	27.0	49.5	90.1
Lor S	Μα	Permissible lateral dynamic torque	10.1	12.7	16.3	20.7
	ML	Permissible dynamic torque lengthwise	8.3	12.9	21.4	35.1
Weigh	nt (g)		103.9	124.4	165.5	206.5

MSQ 15

				Sizes					
	Nam	10	MSQ 15-70.66	MSQ 15-90.70	MSQ 15-110.96	MSQ 15-130.102			
	А	System height	16	16	16	16			
	В	System width	32	32	32	32			
	B1	Rail width	15	15	15	15			
	B ₂	Distance between locating surfaces	8.5	8.5	8.5	8.5			
	J	Carriage height	12	12	12	12			
	J ₁	Rail height	9.5	9.5	9.5	9.5			
	Н	Stroke	66	70	96	102			
Ê	L	System length	70	90	110	130			
Dimensions (mm)	L1	Attachment hole spacing	20	20	20	20			
sions	L2	Attachment hole start/end spacing	15	15	15	15			
nens	L4	Attachment hole spacing	40	40	40	40			
Dir	L5	Attachment hole start/end spacing	15	5	15	5			
	Ν	Lateral attachment hole spacing	25	25	25	25			
	е	Thread	M3	M3	M3	M3			
	f1	Attachment hole diameter	3.5	3.5	3.5	3.5			
	f2	Screw hole diameter	6	6	6	6			
	g	Usable thread length	4	4	4	4			
	g 1	Clamping length	5	5	5	5			
		Ball diameter	2	2	2	2			
Load capacity (N)	Co	Static load capacity	4773	7637	8592	11456			
Load c (h	С	Dynamic load capacity	2611	3628	3940	4820			
	Μοα	Permissible lateral static torque	42.5	68	76.5	102.0			
Torque (Nm)	Mol	Permissible static torque lengthwise	36.7	80.9	99.5	166.6			
DI I	Μα	Permissible lateral dynamic torque	23.2	32.3	35.1	42.9			
	ML	Permissible dynamic torque lengthwise	20.1	38.4	45.6	70.1			
Weigh	it (g)		216.2	277.5	338.6	399.5			

13.3.9 Lubrication

Lubrication is a design element and must therefore be defined during the development phase of a machine or application. If the lubrication is only selected after design and construction is complete, based on our experience this is likely to lead to considerable performance difficulties. A carefully thought out lubrication concept is therefore a sign of a state-of-the-art and well devised design.

Parameters to be taken into account in selecting the lubricant include:

- Operating conditions (speed, acceleration, stroke, load, installation orientation)
- External influences (temperature, aggressive media or radiation, contamination, humidity, vacuum, cleanroom)
- Subsequent lubrication (Period of time, amount, compatibility)
- Compatibility (with other lubricants, with corrosion protection and with integrated materials such as plastic)

Technical and economic considerations determine the lubricant used.

MINISLIDE initial lubrication

MINISLIDE products are lubricated with Klübersynth GE 46-1200 at the factory.

MINISLIDE subsequent lubrication intervals

The lubricant should be applied to the guideway. The subsequent lubrication interval depends on different influencing variables, e.g. load, working environment, speed, etc. and can therefore not be calculated. The lubrication area should therefore be monitored over a longer period.

A) Subsequent lubrication with oil

For subsequent lubrication with oil, mineral oil CLP (DIN 51517) or HLP (DIN 51524) with a viscosity range between ISO VG32 and ISO VG150 in accordance with DIN 51519 is recommended. During lubrication, the carriages/guideways should be moved along the entire stroke length so that the lubricant is distributed correctly.

B) Subsequent lubrication with grease

For lubrication with grease, lubricating grease KP2K or KP1K is recommended in accordance with DIN 51825. During lubrication, the carriages/guideways should be moved along the entire stroke length so that the lubricant is distributed correctly.

Custom lubricants

Special lubricants are used for specific purposes. For example lubricants for use in vacuums, cleanrooms, for high or low temperatures, for high speeds or high-frequency strokes. SCHNEEBERGER can deliver the guideways with the appropriate lubricant for any of these areas of application (see chapter 14.2).

4 MINISLIDE Options

14.1 Push Force Defined (VD)

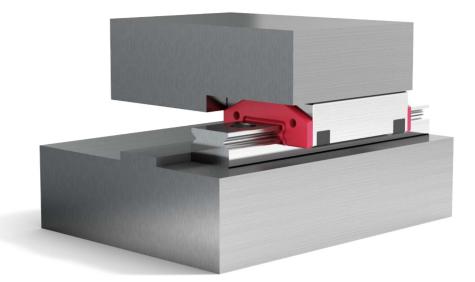
Demanding applications may only perform well if the guideway operates within a specific range of push force. These parameters can be set by SCHNEEBERGER according to customer specifications.

14.2 Customer-specific Lubrication (KB)

The fundamentals of lubrication are described in chapter 13.3.9. Special lubricants are used for specific purposes. For example lubricants for use with vacuums, extreme temperatures, high speeds, heavy loads or high stroke frequencies.

SCHNEEBERGER can supply guideways with the appropriate lubricant for all of these areas of application.

14.3 Cleaned and Vacuum-packed (US)


Guideways operated in a vacuum must be cleaned and packaged accordingly. Cleaning takes place in our cleanroom. The packaging consists of an inner, airtight layer and an outer, protective layer.

Please state your required cleanroom class (ISO 7 or ISO 6) when making enquiries.

MINISLIDE MSQ cleaned and vacuum-packed

5 Configuration of the Base Structure

15.1 General

MINI-X are high-precision components. Flatness requirements of the base structure are correspondingly high so that surface inaccuracies are not transferred to the guideways.

MINI-X guideways perform best when mounted on a rigid structure with a high level of geometric accuracy. Inaccuracies in the guideway assembly surfaces have a negative impact on their overall accuracy, running behaviour, push force and service life. Unstable assembly surfaces can increase the internal forces within the guideway assembly, which also adversely affects service life. Due to their lower rigidity and limited machining accuracy, great care must be taken when designing base structures made of light metal for high-precision applications.

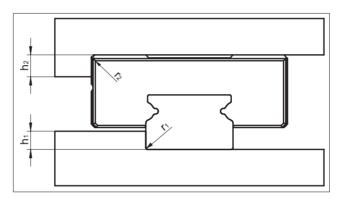
The guideways are compressed against the mounting surfaces by the attachment screws with a high level of force. To prevent relaxation of the assembly, a high surface contact ratio is required. This is achieved by means of high surface quality.

15.2 Surface Quality

The surface quality of the supporting surface does not have a direct influence on the function and running behaviour of the guideway, but it does on the static position accuracy. Carriages and guide rails are compressed against the mounting surfaces by the attachment screws with a high level of force. To prevent relaxation of the assembly, a high surface contact ratio is required. This is achieved by means of high surface quality.

The accuracy of the application critically determines the required surface quality of the reference and locating surfaces. It is therefore necessary to ensure the following:

- High-precision applications max. Ra value of 0.4
- Standard applications
 max. Ra value of 1.6


15 Configuration of the Base Structure

15.3 Reference Height and Corner Radii

Observance of the following height specifications for the reference surfaces guarantees secure absorption of force and sufficient clearance for the carriages. The carriages and guide rails feature a chamfer on the edges of the reference surfaces. The corner radii specified in the following tables are maximum values which ensure that carriages and guide rails contact the mounting surfaces correctly.

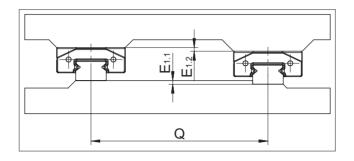
The reference side of the carriage is opposite the carriage side with the company logo / type designation. The guideway can be located on both sides.

The dimensions listed for the reference surface should be applied to ensure optimal alignment of the guideway and an easy installation.

MINIRAIL and MINISCALE PLUS

Rail length	h1	ľ 1max	ľ 2max	h2
7	1.2	0.2	0.3	2.5
9	1.5	0.3	0.4	3
12	2.5	0.4	0.4	4
15	3.5	0.5	0.5	5
14	1.8	0.2	0.4	2
18	3	0.3	0.5	3
24	3.5	0.4	0.5	4
42	3.5	0.5	0.6	5

MINISLIDE


Rail length	h1	ľ 1max	ľ 2max	h2
4	0.2	0.1	0.1	1.2
5	0.4	0.2	0.1	1.8
7	1.0	0.2	0.3	2.5
9	1.5	0.3	0.4	3
12	2.5	0.4	0.4	4
15	3.0	0.5	0.5	5

_ 71

15 Configuration of the Base Structure

15.4 Geometric and Position Accuracy of the Base Surfaces

15.4.1 Permissible Lateral Deviation E1 for MINIRAIL and MINISCALE PLUS

Calculating height deviation E1

$E_1 = Q \cdot V_{vsp}$

- E_1 = height deviation $E_{1.1}$ + $E_{1.2}$ in mm
- Q = guide rail spacing in mm
- V_{vsp} = preload factor (see following table)

	Preload factor V _{vsp}			
Dimension of the carriages	Preload class V0	Preload class V1		
7, 9, 12, 15	0.00025 Q	0.00015 Q		
14, 18, 24, 42	0.00013 Q	0.00008 Q		

Calculation example for E1

Example:	Type MNN 12 in preload class V1 Spacing Q = 120 mm
Calculation:	Type MNN 12 in preload class V1 results in a preload factor V_{vsp} of 0.00015 0.00015 x 120 mm = <u>0.018 mm</u>
Comment:	The deviations of $E_{1,1}$ and $E_{1,2}$ (= E_1) must not exceed 0.018 mm.

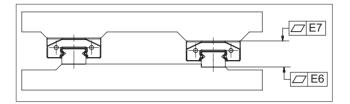
K	

15.4.2 Permissible Longitudinal Deviation E_2 for MINIRAIL and MINISCALE PLUS

Calculating height deviation E2

$E_2 = K V_{vsp}$

- E₂ = height deviation in mm
- Q = carriage spacing in mm
- V_{vsp} = preload factor (see following table)


Carriage dimensions, type MNNS (short)	Preload factor V _{vsp}
7, 9, 12, 15	0.00010 K
Carriage dimensions, type MNN (standard)	Preload factor V _{vsp}
7, 9, 12, 15	0.00005 K
14, 18, 24, 42	0.00004 K
Carriage dimensions, type MNNL (long)	Preload factor V _{vsp}
7, 9, 12, 15	0.00004 K
14, 18, 24, 42	0.00003 K
Carriage dimensions, type MNNXL (extra long)	Preload factor V _{vsp}

Calculation example for E₂

Example:	Type MNNL 42 Spacing K = 700 mm
Calculation:	Type MNNL 42 results in a preload factor V_{vsp} of 0.00003 0.00003 x 700 mm = <u>0.021 mm</u>
Comment:	The deviations of E_2 must not exceed 0.021 mm.

15 Configuration of the Base Structure

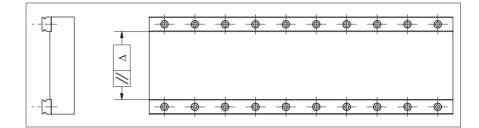
15.4.3 Flatness of the Mounting Surfaces E_6 and E_7

For the flatness of the guideway surface E6 across the entire length, referring to the values for running accuracy for the appropriate accuracy class as described in chapter 7.2.4 is recommended.

For the flatness of the carriage surface E7, the values in the table below should be targeted.

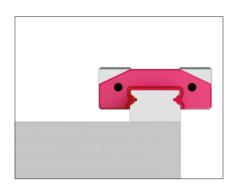
MINIRAIL and MINISCALE PLUS

Dimensions	Flatness (in µm)
7	3
9	3
12	
15	4
14	4
18	
24	5
42	5


MINISLIDE MS and MSQ

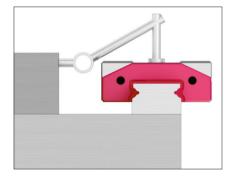
For the flatness of the carriage surface E7, the values in the table below should be targeted.

Dimensions	Flatness (in µm)
4	2
5	۷.
7	3
9	5
12	Λ
15	4

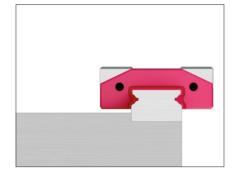

15.4.4 Parallelism Tolerance of the Reference Surfaces for MINIRAIL and MINISCALE PLUS

Guide rails which are not aligned in parallel cause unplanned loads in the guide system over its stroke length, subsequently subjecting the tracks to additional stress. This decreases running accuracy of the guideways and can shorten the service life. The parallelism tolerances Δ below must therefore be adhered to.

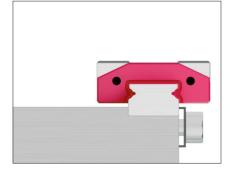
	Rail widths in mm					
Preload class	7 and 14	9 and 18	12 and 24	15 and 42		
VO	Δ 0.003 mm	Δ 0.005 mm	Δ 0.008 mm	Δ 0.010 mm		
V1	Δ 0.002 mm	Δ 0.003 mm	Δ 0.004 mm	Δ 0.005 mm		


16.1 Methods for Aligning the Guideways

Alignment of the guide rails depends on the level of accuracy needed and must be specified in the construction phase of the machine, since this is when the number of reference surfaces as well as their positions are determined. A distinction is made between the following types of alignment:


No reference edge available

- Alignment by hand without tools
- Not recommended
- Very low accuracy and lateral force absorption


No reference edge available

- Alignment by hand with tools, e. g. aligning gauge, guide strip, dial gauge, installation carriage
- Medium to high level of accuracy depending on the complexity
- Low accuracy and lateral force absorption

Lateral reference

- Alignment by means of pressing against the reference surface
- High level of accuracy, depending on the accuracy of the reference edge
- Very quick due to predefined reference edge

Lateral reference surface and additional lateral clamping

- Alignment by pressing against the reference surface with the help of lateral clamping elements
- Very high level of accuracy, depending on the accuracy of the reference edge
- Very quick due to predefined reference edge

16.2 Installation Methods

Different criteria must be taken into consideration when choosing an appropriate installation method and defining the number and arrangement of the lateral reference surfaces. These are:

- 16.2.1 Load
- 16.2.2 Accuracy
- 16.2.3 Installation time and engineering expense
- 16.2.4 Installation location and specifics

16.2.1 Load

Forces in the direction of tension/compression do not have any influence on the lateral reference surfaces. If side loads emerge which exceed the permitted lateral force, references and lateral clamping must be specified. Number and orientation depend on the forces that occur.

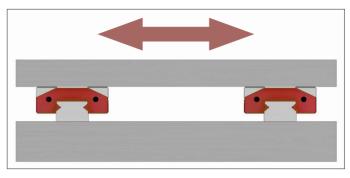
The reference surfaces should be arranged based on the direction of force of the main load. Lateral references should also be provided when vibration and impacts occur. They also increase the rigidity of the system.

16.2.2 Accuracy

Lateral reference surfaces are recommended if a high level of guideway accuracy is required. The references make installation easier and reduce the complexity involved in ensuring accuracy. The guideway accuracy is determined by the straightness of the reference surfaces and by the guide rail compression process and/or by the accuracy of the lateral clamping.

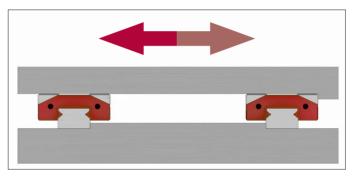
16.2.3 Installation Time and Engineering Expense

Reference surfaces make installation easier and reduce the complexity involved in aligning the guide rails.

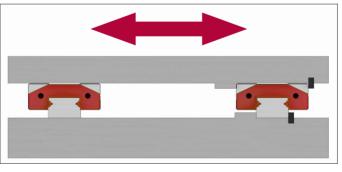

With careful manual alignment of the guideway, it is possible to dispense with the need for lateral reference surfaces. When deciding on a method, the complexity of the installation should be carefully considered and compared with the design and technical manufacturing complexity.

16.2.4 Installation Location and Specifics

Reference surfaces and lateral clamping require additional installation space and access to the installation areas. It is therefore important to check whether the provided references and adjustments are compatible with the installation area in the machine.


Shown below are some typical installation methods which differ in terms of the number and orientation of the reference surfaces, the transferable lateral forces and the complexity of installation, and are intended to serve as a design aid.

Installation option 1

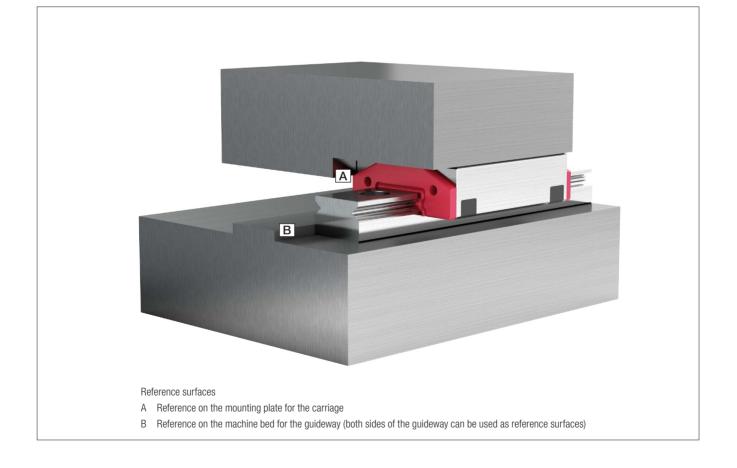

- No reference surfaces
- The forces are transferred by friction locking
- Long installation time and high engineering expense

Installation option 2

- Both guide rails with one reference Carriage side with opposite reference
- Simple installation
- High lateral force absorption from one direction, e.g. for hanging installation

Installation option 3

- A guide rail and carriage with reference and lateral clamping
- For high lateral forces from both directions (a guide rail with carriage will take the majority of the lateral force)
- Relatively simple installation


16.3 Preparing for the Installation

16.3.1 Required Tools and Equipment

- Oil stone
- Lubricant
- Torque wrench
- Fastening screws

16.3.2 Preparing the Reference Surfaces

- Check reference surfaces of the machine bed and mounting plate for shape and position accuracy.
- Clean all reference surfaces thoroughly. Remove ridges and surface irregularities with an oil stone.
- Use mineral spirits or rubbing alcohol to clean the reference and supporting surfaces of guideways and carriages. Do not use paint thinner!
- Clean dirty guideways with a soft, lint-free cloth. Do not use compressed air!
- Lightly oil the reference surfaces on the guideways and carriages.

16.3.3 Lubrication of MINIRAIL

Initial lubrication

Unless specified otherwise, carriage and guideway are delivered separately (see chapter 18.1). They are delivered unlubricated and must have a suitable lubricant for the application applied before operating.

A) Oil lubrication

For lubrication with oil, mineral oil CLP (DIN 51517) or HLP (DIN 51524) with a viscosity range between ISO VG32 and ISO VG150 in accordance with DIN 51519 is recommended.

Guideway:

The tracks of the guideway should be coated in a thin film of oil using a lint-free cloth soaked with oil (also applies when using the optional LUBE-S. See chapter 8.1).

Carriage:

The wipers on the carriages each feature two lubrication holes (see chapter 7.1.8), so that the left and right ball recirculation pathways can be lubricated separately. During lubrication, the carriages should be moved along the entire length of the rail so that the lubricant is applied to both the carriage and guideway. Ensure both tracks are properly lubricated.

A relubrication set with KLÜBER Structovis GHD can be ordered from SCHNEEBERGER, part number MNW.

B) Grease lubrication

For lubrication with grease, lubricating grease KP2K or KP1K is recommended in accordance with DIN 51825.

Guideway:

The tracks of the guideway should be coated in a thin film of grease using a lint-free cloth (also applies when using the optional LUBE-S. See chapter 8.1).

Carriage:

The following quantities of grease should be applied to the ball bearings with an applicator.

Short carriages	MNNS 7	MNNS 9	MNNS 12	MNNS 15				
Grease quantity in cm ³	0.03	0.05	0.09	0.16				
Standard carriages	MNN 7	MNN 9	MNN 12	MNN 15	MNN 14	MNN 18	MNN 24	MNN 42
Grease quantity in cm ³	0.04	0.09	0.15	0.25	0.05	0.11	0.20	0.33
Long carriages	MNNL 7	MNNL 9	MNNL 12	MNNL 15	MNNL 14	MNNL 18	MNNL 24	MNNL 42
Grease quantity in cm ³	0.05	0.11	0.20	0.35	0.07	0.14	0.26	0.45
Extra long carriages	MNNXL 7	MNNXL 9	MNNXL 12	MNNXL 15				
Extra long barnagoo								

After the ball bearings have been greased, the carriages should be moved along the entire length of the rail so that the lubricant is applied to both the carriage and guideway.

Relubrication intervals

The relubrication interval depends on many variables, e.g. load, working environment, speed, etc. and therefore cannot be calculated. The lubrication point must therefore be observed over a longer period of time.

A) Relubrication with oil

A relubrication set with KLÜBER Structovis GHD can be ordered from SCHNEEBERGER, part number MNW.

The two lubrication holes in the front plates allow the ball recirculation pathways to be lubricated with oil directly (see chapter 7.1.8). Ensure both tracks are properly lubricated.

During lubrication, the carriages should be moved along the entire length of the rail so that the lubricant is applied to both the carriage and guideway.

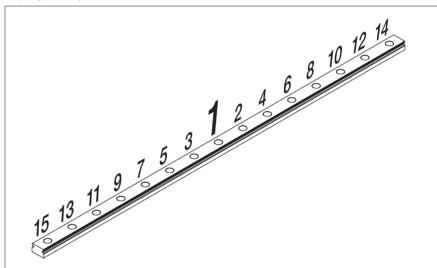
B) Relubrication with grease

The tracks of the guideway should be coated in a thin film of grease using a lint-free cloth. The carriages should then be moved along the entire length of the rail so that the lubricant is applied to the ball bearings and distributed along the guideway.

16.3.4 Lubrication of MINISCALE PLUS

Please refer to the installation instructions in the download section of **www.schneeberger.com**

Relubrication set (MNW), contents 7 ml

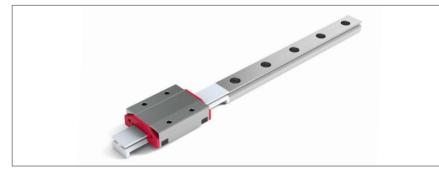

16.4 Installation

16.4.1 General

- Before installation, the guideway, machine bed, mounting plate and fastening screws must all be at room temperature
- Always tighten the fastening screws with a torque wrench. See chapter 16.5 for torque values
- Always press the reference surface of the guideway against the reference surface of the machine bed. The guideway can be located on both sides, the reference side of the carriage is opposite the carriage side with the company logo / type designation

16.4.2 MINIRAIL and MINISCALE PLUS

• Alternate between sides of the guideway, starting at the middle, when tightening fastening screws. Pay attention to guideways on multi-part MINIRAIL systems (chapter 8.2)



Fixing MINIRAIL guideways correctly

16.4.3 MINIRAIL

A protective plastic guideway is included on delivery (matched deliveries are the exception). The carriages should be transferred directly from the protective plastic guideway onto the steel guideway. This prevents dirt from getting into the carriages or the carriages from tilting which could lead to the loss of ball bearings.

Carriage on the protective plastic guideway before being transferred onto the steel guideway

16.5 Tightening Torques for the Fastening Screws

The recommended torque values can be found in the table. These values apply to oiled screws with a coefficient of friction of 0.12.

The coefficient of friction can be as low as 0.07 for lubricated screws. The corresponding torque values should be reduced by half.

The following table shows the torque values for the fastening screws of strength class 12.9 (friction coefficient 0.125) and of the strength class A2-70 (friction coefficient 0.2) in accordance with DIN 912:

Thread size	Maximum tightening torque in Ncm			
Thread Size	Strength class 12.9	Strength class A2-70		
M1.6	28	20		
M2	60	30		
M3	210	110		
M4	500	260		

16.6 Specific Information on MINISCALE PLUS

Information on installation and start-up of MINISCALE PLUS can be found in the download section of **www.schneeberger.com**.

Load Carrying Capacity and Service Life

17.1 Principles

The load capacities are based on the principles of DIN 636.

In accordance with DIN in most applications a permanent overall deformation of 0.0001 times the rolling element diameter can be permitted without adversely affecting the operating behaviour of the bearing. Consequently, the static load capacity C_0 is set sufficiently high that the aforementioned deformation occurs approximately when the equivalent static load corresponds to the static load capacity. Being guided by the dynamic load capacity C is recommended so that the aforementioned overall deformation does not occur.

The dynamic load capacity C is the load at which a nominal service life L of 100 km of travel distance is achieved. It is important to note when calculating the service life that not only the load, which acts vertically on the guideway, should be taken into account but also the load spectrum of all acting forces and moments.

The service life corresponds to the total travel distance in meters which a guideway facilitates. And this is before any noticeable material fatigue on one of the roller guideway elements. The nominal service life is achieved when 90% of the guideways of identical construction reach or exceed the corresponding travel distances under normal operating conditions.

Critical for the dimensioning of the guideways are the loads occurring proportionally with the dynamic load capacity C.

Definition of service life

As previously mentioned, the dynamic load capacity C_{100} is based on a service life of 100 km. Other manufacturers frequently indicate the load capacity C_{50} for a service life of 50 km. The resulting load capacities from this are more than 20% higher than specified by the DIN ISO standard.

Conversion example for ball bearings

Convert C_{50} load capacities to C_{100} in accordance with the DIN ISO standard: C_{100} = $0.79\cdot C_{50}$

Convert C₁₀₀ load capacities to C₅₀: C₅₀ = 1.26 \cdot C₁₀₀

 C_{50} = dynamic load capacity C in N for 50 km of travel distance C_{100} = dynamic load capacity C in N for 100 km of travel distance, defined in accordance with DIN ISO standard

7 Load Carrying Capacity and Service Life

17.2 Calculation of Service Life L in Accordance with the DIN ISO Standard

17.2.1 The Formula for Calculating the Nominal Service Life for Ball Guideways in Meters is as follows:

$$L = a \cdot \left(\frac{C_{eff}}{P}\right)^3 \cdot 10^5 \,\mathrm{m}$$

- a = Event probability factor
- C_{eff} = Effective load carrying capacity N
- P = Dynamic, equivalent load in N
- L = Nominal service life in m

Event probability factor a

The load carrying capacities for roller-contact bearings correspond to the DIN ISO standard. This represents a value from the service life calculation, which has a 90% chance of being exceeded during operational use of the guideway.

If the previously mentioned theoretical service life probability factor of 90% is not sufficient, the service life values will need to be adjusted by a factor a.

Event probability in %	90	95	96	97	98	99
Factor a	1	0.62	0.53	0.44	0.33	0.21

17.2.2 The Formula for Calculating Nominal Service Life in Hours is as follows:

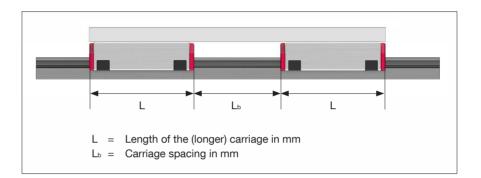
$$L_h = \frac{L}{2 \cdot s \cdot n \cdot 60} = \frac{L}{60 \cdot v_m}$$

- L = Nominal service life in m
- L_h = Nominal service life in h
- s = Stroke length in m
- n = Stroke frequency in min⁻¹
- v_m = Medium travelling speed in m/min

17.2.3 Effective Load Carrying Capacity Ceff

Constructive and external influences can reduce the dynamic load capacity C of MINI-X products in such a way that $C_{\mbox{\tiny eff}}$ must be calculated.

 $C_{eff} = f_K \cdot C$


C_{eff} = Effective load carrying capacity N

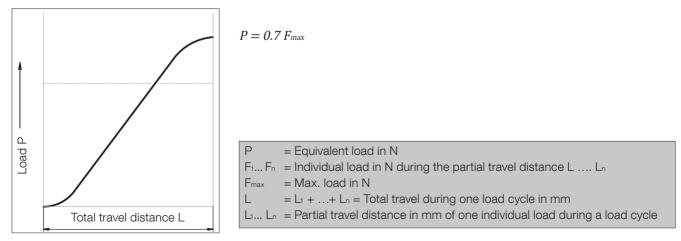
- f_{κ} = Contact factor
- C = Maximum permissible dynamic load carrying capacity in N

Contact factor fk

If multiple carriages are mounted back-to-back with minimal spacing ($L_b < L$), an even weight distribution will be difficult to achieve due to the manufacturing tolerances of the guideway elements and mounting surfaces. Installation situations such as these can be allowed for with the contact factor fk:

Number of carriages	1	2	3	4	5
Contact factor fk	1	0.81	0.72	0.66	0.62

17.2.4 Dynamically Equivalent Load P


Stepped load

The loads (F) acting on a linear guideway system are subject to frequent fluctuations during operation. This set of circumstances should be taken into account when calculating service life. The varying load absorption of the guideway at varying operating conditions during the travel distance is described as being the dynamic equivalent load P.

$$P = \frac{3}{L} \sqrt{\frac{1}{L} (F_1^3 \cdot L_1 + F_2^3 \cdot L_2 + \dots F_n^3 \cdot L_n)}$$

18 Handling, Storage and Transport

18.1 Delivered Condition (Standard Version)

All guideway components are delivered in adequate packaging. Accessories are included in separate packaging.

MINIRAIL guideways are delivered unlubricated as standard (lubrication in the factory on request) so that they can be lubricated in a way specific to the required application.

Guideways

The guideways are packed in VCI paper as standard.

Packaging of MINIRAIL guideways

Carriages

The carriages are delivered in varying sizes of packaging depending on the quantity ordered. They are mounted onto a plastic guide rail which provides protection during transport and aids in installation.

Packaging of MINIRAIL carriages

Delivered as a set

Carriages and guideways are delivered mounted (including for «height-matched carriages HA» or «push force defined VD» options).

MINIRAIL package as a set

18 Handling, Storage and Transport

MINISCALE PLUS

The complete axis (guideway with carriage) is delivered as a ready-built set. All components (MINISCALE PLUS and MINIRAIL) are lubricated with KLÜBER Isoflex NBU15.

MINISCALE PLUS packaged as a set

Important: Please use the order form on our website. (Downloads/Order forms)

MINISLIDE

MINISLIDE products are lubricated with Klübersynth GE 46-1200 lubricant and are delivered ready to install.

MINISLIDE packaging

8 Handling, Storage and Transport

18.2 Handling and Storage

MINI-X products are high-precision components and should be handled with care. For transportation of these products in-house, the following points should therefore be noted:

- Transport guideways and accessories in their original packaging
- · Protect guideways against impacts
- Always transport MINIRAIL and MINISCALE PLUS carriages on guide rails or on the protective plastic rail

The following instructions should be noted to protect against damage:

- Storage in the original packaging is only possible for a limited period. The condition of the products should be checked at regular intervals.
- Do not store the products in the open. Protect them against moisture and humidity (10% – 70% non-condensing)
- Pay attention to the temperature: MINIRAIL -40° C to + 80° C MINISCALE PLUS -40° C to + 80° C MINISLIDE MS -40° C to + 80° C MINISLIDE MSQ -40° C to + 150° C
- Only remove the products from their original packaging at their installation location and immediately prior to assembly.
- For guideways that are delivered ready-lubricated, the lubricant should be checked (the service life of the lubricant is limited).
- Always store MINIRAIL and MINISCALE PLUS carriages on the guide rail or plastic rail so that the rolling elements are protected.

Improper handling of the guideways can lead to preliminary damage and thus to premature failure. Installation should therefore only be carried out by a qualified technician.

19.1 MINIRAIL

Carriages and guideways should be ordered separately

Carriages		100	MNN		9-				G1-			LS-	VD-	HA-	KB-	US-	AS, AL, 04
Guideways		50		MN	9-	155-	7.5-	7.5-	G1-	V1-	ZG						
Quantity																	
Carriage type	MNNS ^(B) , MNN, MNNL, MNNXL ^(B)		_														
Rail type	MN																
Size	7, 9, 12, 15, 14, 18, 24, 42																
Rail length L ₃	in mm					-											
Start hole spacing L_5 ^(C)	in mm						-										
End hole spacing L10 (C)	in mm																
Accuracy class	G1 or G3																
Preload class	V0 or V1																
Multi-part guideways	ZG																
LUBE-S long-term lubrication	LS																
Defined push force (A)	VD									-							
Height-matched carriages (A)	HA																
Customer-specific lubrication	КВ														•		
Cleaned with ultrasound, vacuum packed	US																
Wipers ^(D)	AS, AL or OA																

^(A) This option is delivered as a set (carriage mounted on guideway)

^(B) Not available in sizes 14, 18, 24 and 42

 $^{\rm (C)}$ Only to be quoted for non-standard orders

^(D) Standard wipers will be delivered unless this is stated. Type AL is only available for sizes 7, 9, 12 and 15

19.2 MINISCALE PLUS

The complete axis is delivered lubricated and ready to install. The download area of the www.schneeberger.com website includes order and enquiry forms. Or define the parameters of individual components with one of the SCHNEEBERGER specialists.

19.3 MINISLIDE MS or MSQ

				_						
Ordering sequence		88	MS	5-	40.	31-	VD-	HA-	KB-	US
Quantity										
Series	MS or MSQ		-							
Rail width B1	4, 5, 7, 9, 12, 15									
System length L	in mm				-					
Stroke H	in mm					-				
Defined push force	VD									
Height-matched	HA									
Customer-specific lubrication	KB									
Cleaned with ultrasound and vacuum packed (E)	US									

(E) Ensure the red end plates are removed so that air does not get trapped in the fastening screw holes

SCHNEEBERGER AGENCIES

EUROPE

AUSTRIA

Haberkorn GmbH 6961 Wolfurt Phone: +43 5574 695-0 +43 5574 695-99 Fax: info.wolfurt@haberkorn.com

BULGARIA / MACEDONIA

Atlas Technik EOOD Hippodroma, Bl. 139B, Eing. A, App. 6 1612 Sofia, PB 51 Bulgarien Phone +359 2 859 76 81 +359 2 859 76 81 Fax Mobil +359 8 852 32 595 E-Mail: al_popoff@techno-link.com

CROATIA

Haberkorn CRO d.o.o. 10431 Sveta Nedelja Phone +385 1 333 5870 Phone Fax. +385 1 337 3902 E-Mail: info@haberkorn.hr

CZECH REPUBLIC

INOMECH s.r.o. . Martina Koláře 2118 390 02 Tábor Phone +420 381 252 223 E-Mail: inomech@inomech.com

DENMARK HERSTAD + PIPER A/S Jernholmen 48c 2650 Hvidovre Phone +45 367 740 00 +45 367 777 40 Fax E-Mail: mail@herstad-piper.dk

FINI AND

EIE Maskin OY PL, 80 Asematie 1 10601 Tammisaari Phone +358 192 239 100 +358 192 239 199 Fax E-Mail: info@eie.fi

FRANCE

Region Rhône-Alpes Groupe BARET 6 avenue du 11 novembre 1918 69200 Venissieux Phone +33 4 78 77 32 32 +33 4 78 00 90 00 Fax E-Mail: contact@baret.fr

Regions Ile de France,

Normandie, Bretagne Groupe LECHEVALIER 56 rue Jean Mermoz Parc d, activités de la Bretèque 76230 Bois-Guillaume Cedex Phone +33 2 35 12 65 65 +33 2 35 59 89 97 Fax E-Mail: contact@lechevalier-sa.com

Region Nord Pas de Calais

LEFRANC LTL «Le Panetier» 35, rue Pierre Martin Parc d'Activités de l'Inquétrie 62280 Saint Martin Boulogne Phone +33 3 21 99 51 51 Fax +33 3 21 99 51 50 E-Mail: lefranc.boulogne@lefranc-sa.fr

GERMANY

BGP-Blazevic Geradlinige Präzisionstechnik Stipo Blazevic Hochstiftstrasse 31 +49 151 401 126 25 Mobil E-Mail: info@bgp-blazevic.de

EUROPE

GREAT BRITAIN

LG Motion Ltd. Unit 1 Telford Road Houndmills Estate, Basingstoke Hampshire RG21 6YU Phone +44 012 563 656 00 +44 012 563 656 45 Fax E-Mail: info@lg-motion.co.uk

HUNGARY

Haberkorn Kft. Asztalos Sándor u.12 Budapest, 1087 Phone +36 13030325 Fax +36 1/3030262 E-Mail: office@haberkorn.hu

ITALY

Nadella S.r.l. Via Melette, 16 20128 Milano Phone +39 022 709 329 7 Fax +39 022 551 768 E-Mail: customer.service@nadella.it

NORWAY

Elmeko AS (s. EIE Maskin) Tvetenveien 164 0671 Oslo Phone +47 675 722 70 +47 675 722 80 Fax E-Mail: elmeko@elmeko.no

POLAND

TECHNIKA LINIOWA Rollico Rolling Components UI. Cegielniana 21 42-700 Lubliniec Phone +48 343 510 430 Fax +48 343 510 431 E-Mail: rollico@rollico.com

ROMANIA

Meximpex SRL 4, Burebista Blvd., bl. D13 sc. A et 2 ap. 9-10 031108 Bucharest Phone +40 213 166 843 /44 Fax +40 213 166 846 E-Mail: office@meximpex.ro

SERBIA/MONTENEGRO

Haberkorn d.o.o. Kralja Petra I, 59 21203 Veternik, +381 21 3 101 555 +381 21 3 101 554 Phone Fax E-Mail: office@haberkorn.rs

SLOVAKIA

KBM, s.r.o. Jurai Haiovsky Zitná 13 010 04 Zilina Phone +421 417 070 324 +421 417 070 333 Fax Mobile +421 090 585 1465 E-Mail: jhajovsky@kbm.sk

SLOVENIA / BOSNIA HERZEGOVINA

Haberkorn d.o.o. Vodovodna ul. 7 2000 Maribor Phone +386 2 320 67 10 Fax +386 2 320 67 30 E-Mail: info@haberkorn.si

SPAIN / PORTUGAL

TECNOMECA-KI DELAN-DEXIS Pol Industrial Itziar 20829 DEBA (Gipuzkoa) Phone +34 943 199 201 Phone +34 943 199 273 E-Mail: tecnomeca@tecnomeca.com

EUROPE

SWEDEN

EIE Maskin AB Box 7 12421 Bandhagen Phone +46 87 278 800 Fax +46 87 278 899 E-Mail: eie@eie.se

TURKEY

Birlik Rulman (Paz.ltd.sti.) Mumhane Cad. No: 16 80030 Karakoy-Istanbul Phone +90 212 249 54 95 Fax +90 212 244 21 40 Fax E-Mail: birlik@birlikrulman.com

Mustafa Kozanlı Mühendislik Ltd. Şti. Çalı Kavşağı Alaaddinbey Cad. No: 7 16130 Nilüfer / BURSA Phone +90 224 443 26 40 Fax +90 224 443 26 39 Fax E-Mail: satis@kozanli.com.tr

ASIA

KOREA

Intech Automation Inc. 1-1108, Ace Hitech City 55-20 Mullae-Dong 3-Ga Youngdeungpo-Ku 150-972 Seoul Phone +82 2 3439 0070 - 4 Fax +82 2 3439 0080 Fax +82 2 3439 0080 E-Mail: intech@intechautomation.co.kr

Lineartech Inc. 369 Geumgok-ri, Dongtan-myeon Hwaseong-si, Gyeonggi-do 445-811 Korea Phone +82 31 274 0485 Fax +82 31 274 0486 E-Mail: lineartech@chol.com

TAIWAN / REPUBLIC OF CHINA

Ever Bright Precisiton Ltd. 1 F,nr.52 Lane 10 Chi-hu Road 114 Taipei +886 226 595 586 Phone +886 226 595 587 Fax E-Mail: sales@everbright.com.tw

AUSTRALIA / NEW ZEALAND

RJM Engineering Supplies Tamar Street 13 VIC 3134 Ringwood Phone +61 398 794 881 +61 398 793 700 Fax E-Mail: sales@rjmeng.com.au

SOUTH AFRICA

Fischli & Fuhrmann Ltd. P.O Box 253 1600 Isando Gauteng Phone +27 119 745 571 Fax +27 119 745 574 E-Mail: info@fifu.co.za

SOUTH AMERICA

Ibatech Tecnologia Ltda. Av. Amazonas, 976 90240 542 Porto Alegre RS Brazil Phone +55 513 337 14 81 +55 513 337 52 65 Fax E-Mail: service@framar-corp.com

PROSPECTUSES

- COMPANY BROCHURE
- CUSTOMIZED BEARINGS
- GEAR BACKS
- LINEAR BEARINGS and RECIRCULATING UNITS
- MINERAL CASTING SCHNEEBERGER
- MINI-X MINIRAIL / MINISCALE PLUS / MINISLIDE
- MONORAIL and AMS profiled linear guideways with integrated measuring system
- MONORAIL and AMS application catalog
- POSITIONING SYSTEMS
- SLIDES

SCHNEEBERGER COMPANIES

SWITZERLAND

SCHNEEBERGER AG Lineartechnik St. Urbanstrasse 12 4914 Roggwil/BE

Phone +41 62 918 41 11 Fax +41 62 918 41 00

F-Mail info-ch@schneeberger.com

JAPAN

Nippon SCHNEEBERGER K.K. Crane Toranomon Bldg 7F -20-5 Toranomon, Minato-ku Tokvo 105-0001

Phone +81 3 6435 7474 Fax +81 3 6435 7475

E-Mail: info-j@schneeberger.com

JAPAN

電話

technical changes.

Subject to

0.1069/01/0115/e/3.2/SRO/EG/Printed in Switzerland.

日本シュネーベルガー株式会社 〒105-0001 東京都港区虎ノ門3-20-5 クレイン虎ノ門ビル7F

03 6435 7474

ファクス 03 6435 7475 Eメール: info-j@schneeberger.com

SCHNEEBERGER MINERAL CASTING

CZECH REPUBLIC

SCHNEEBERGER Mineralgusstechnik s.r.c Prumyslový park 32/20 350 02 Cheb – Dolní Dvory

Phone +420 354 400 941 Fax +420 354 400 940 F-Mail

info-mineralguss@schneeberger.com info-mineralcasting@schneeberger.com info-mineralcasting@schneeberger.com

BENELUX

F-Mail

E-Mail:

SCHNEEBERGER SALES DEPARTMENTS

AUSTRIA AND SOUTH EAST EUROPE Mobile +43 676 935 1035

F-Mail info-a@schneeberger.com

ISRAEL

Mobile +972 5 0551 7920

E-Mail: info-il@schneeberger.com

www.schneeberger.com

SCHNEEBERGER GmbH Gräfenau 75339 Höfen/Enz

Phone +49 7081 782 0 Fax +49 7081 782 124

F-Mail info-d@schneeberger.com

CHINA

GERMANY

SCHNEEBERGER (Shanghai) Co., Ltd. Rm 606, Shang Gao International Building No. 137 XianXia Road 200051 Shanghai

Phone +86 21 6209 0037 / 27 Fax +86 21 6209 0102

E-Mail: info-cn@schneeberger.com

CHINA

施耐博格(上海)传动技术有限公司 上海市长宁区 仙霞路137号盛高国 际大厦606室,上海 200051

传真 +86 21 6209 0102 邮箱:

info-cn@schneeberger.com

电话 +86 21 6209 0027

CHINA SCHNEEBERGER Changzhou Precision Systems Co. Ltd. 137 Hanjiang Road Changzhou New district 213000 Changzhou, Jiangsu

Phone +86 519 8988 3938 Fax +86 519 8988 5115 E-Mail:

Mobile +31 6 5326 3929

info-nl@schneeberger.com

POLAND, SLOVAKIA,

Mobile +420 6 0278 4077

info-cz@schneeberger.com

CZECH REPUBLIC

ITALY

SCHNEEBERGER S.r.I. Via Soldani 10 21021 Angera (VA)

Phone +39 0331 93 2010 Fax +39 0331 93 1655

E-Mail: info-i@schneeberger.com

KOREA

SCHNEEBERGER Korea Ltd. Garden5 Tool 10, Chungmin-ro, Songpa-gu, Seoul, Korea 05840

E-Mail:

Phone +82 2 554 2971 Fax +82 2 554 3971

info-kr@schneeberger.com

KOREA

슈니베거코리아 유한회사 서울특별시 송파구 충민로 10 (문정2동 가든파이브 툴관 10층) 우편번호 05840

전화 +82 2 554 2971 팩스 +82 2 554 3971

이메일: info-kr@schneeberger.com

CHINA

施耐博格(常州)测试系统有限公司 汉江路137,常州新区,常州213022

电话 +86 519 8988 3938 +86 519 8988 5115 传真 邮箱

DENMARK, SWEDEN

Mobile +31 6 5326 3929

info-nl@schneeberger.com

RUSSIA, BELARUS,

Mobile +7 985 960 85 53

Mobile +38 050 407 6789 Mobile +37 529 860 0410

info-ru@schneeberger.com

F-Mail

E-Mail:

UKRAINE

FRANCE

ANDORRA

Mobile +33 6 0941 6269 F-Mail info-f@schneeberger.com

SPAIN, PORTUGAL

Mobile +34 69 559 05 99

E-Mail: info-es@schneeberaer.com

INDIA

SCHNEEBERGER India Pvt. Ltd. 406, Satra Plaza, Palm Beach Road, Sector 19D Vashi, 400 703 New Mumbai

Phone +91 22 6461 0646 +91 22 6461 1756

F-Mail info-in@schneeberger.com

GREAT BRITAIN

Mobile +44 77 8814 5645 F-Mail info-uk@schneeberger.com

TURKEY

Mobile + 90 545 320 83 55

E-Mail: info-tr@schneeberger.com

E-Mail:

SCHNEEBERGER Inc. 44 Sixth Road, Woburn, MA 01801-1759

Phone +1 781 271 0140 Fax +1 781 275 4749

F-Mail info-usa@schneeberger.com

SINGAPORE

SCHNEEBERGER LINEAR TECHNOLOGY PTE. Ltd. 160 Paya Lebar Road, #05-04 Orion Industrial Building 409022 Singapore

Phone + 65 6841 2385 + 65 6841 3408 Fax

info-sa@schneeberaer.com

SCHNEEBERGER

